Author: Daniel Kressner
Publisher: Springer Science & Business Media
ISBN: 3540285024
Category : Mathematics
Languages : en
Pages : 272
Book Description
This book is about computing eigenvalues, eigenvectors, and invariant subspaces of matrices. Treatment includes generalized and structured eigenvalue problems and all vital aspects of eigenvalue computations. A unique feature is the detailed treatment of structured eigenvalue problems, providing insight on accuracy and efficiency gains to be expected from algorithms that take the structure of a matrix into account.
Numerical Methods for General and Structured Eigenvalue Problems
Author: Daniel Kressner
Publisher: Springer Science & Business Media
ISBN: 3540285024
Category : Mathematics
Languages : en
Pages : 272
Book Description
This book is about computing eigenvalues, eigenvectors, and invariant subspaces of matrices. Treatment includes generalized and structured eigenvalue problems and all vital aspects of eigenvalue computations. A unique feature is the detailed treatment of structured eigenvalue problems, providing insight on accuracy and efficiency gains to be expected from algorithms that take the structure of a matrix into account.
Publisher: Springer Science & Business Media
ISBN: 3540285024
Category : Mathematics
Languages : en
Pages : 272
Book Description
This book is about computing eigenvalues, eigenvectors, and invariant subspaces of matrices. Treatment includes generalized and structured eigenvalue problems and all vital aspects of eigenvalue computations. A unique feature is the detailed treatment of structured eigenvalue problems, providing insight on accuracy and efficiency gains to be expected from algorithms that take the structure of a matrix into account.
Numerical Methods for Large Eigenvalue Problems
Author: Yousef Saad
Publisher: SIAM
ISBN: 9781611970739
Category : Mathematics
Languages : en
Pages : 292
Book Description
This revised edition discusses numerical methods for computing eigenvalues and eigenvectors of large sparse matrices. It provides an in-depth view of the numerical methods that are applicable for solving matrix eigenvalue problems that arise in various engineering and scientific applications. Each chapter was updated by shortening or deleting outdated topics, adding topics of more recent interest, and adapting the Notes and References section. Significant changes have been made to Chapters 6 through 8, which describe algorithms and their implementations and now include topics such as the implicit restart techniques, the Jacobi-Davidson method, and automatic multilevel substructuring.
Publisher: SIAM
ISBN: 9781611970739
Category : Mathematics
Languages : en
Pages : 292
Book Description
This revised edition discusses numerical methods for computing eigenvalues and eigenvectors of large sparse matrices. It provides an in-depth view of the numerical methods that are applicable for solving matrix eigenvalue problems that arise in various engineering and scientific applications. Each chapter was updated by shortening or deleting outdated topics, adding topics of more recent interest, and adapting the Notes and References section. Significant changes have been made to Chapters 6 through 8, which describe algorithms and their implementations and now include topics such as the implicit restart techniques, the Jacobi-Davidson method, and automatic multilevel substructuring.
Templates for the Solution of Algebraic Eigenvalue Problems
Author: Zhaojun Bai
Publisher: SIAM
ISBN: 0898714710
Category : Computers
Languages : en
Pages : 430
Book Description
Mathematics of Computing -- Numerical Analysis.
Publisher: SIAM
ISBN: 0898714710
Category : Computers
Languages : en
Pages : 430
Book Description
Mathematics of Computing -- Numerical Analysis.
Inverse Eigenvalue Problems
Author: Moody Chu
Publisher: Oxford University Press
ISBN: 0198566646
Category : Mathematics
Languages : en
Pages : 408
Book Description
Inverse eigenvalue problems arise in a remarkable variety of applications and associated with any inverse eigenvalue problem are two fundamental questions--the theoretical issue of solvability and the practical issue of computability. Both questions are difficult and challenging. In this text, the authors discuss the fundamental questions, some known results, many applications, mathematical properties, a variety of numerical techniques, as well as several open problems.This is the first book in the authoritative Numerical Mathematics and Scientific Computation series to cover numerical linear algebra, a broad area of numerical analysis. Authored by two world-renowned researchers, the book is aimed at graduates and researchers in applied mathematics, engineering and computer science and makes an ideal graduate text.
Publisher: Oxford University Press
ISBN: 0198566646
Category : Mathematics
Languages : en
Pages : 408
Book Description
Inverse eigenvalue problems arise in a remarkable variety of applications and associated with any inverse eigenvalue problem are two fundamental questions--the theoretical issue of solvability and the practical issue of computability. Both questions are difficult and challenging. In this text, the authors discuss the fundamental questions, some known results, many applications, mathematical properties, a variety of numerical techniques, as well as several open problems.This is the first book in the authoritative Numerical Mathematics and Scientific Computation series to cover numerical linear algebra, a broad area of numerical analysis. Authored by two world-renowned researchers, the book is aimed at graduates and researchers in applied mathematics, engineering and computer science and makes an ideal graduate text.
Numerical Algorithms
Author: Justin Solomon
Publisher: CRC Press
ISBN: 1482251892
Category : Computers
Languages : en
Pages : 400
Book Description
Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig
Publisher: CRC Press
ISBN: 1482251892
Category : Computers
Languages : en
Pages : 400
Book Description
Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig
The Matrix Eigenvalue Problem
Author: David S. Watkins
Publisher: SIAM
ISBN: 9780898717808
Category : Mathematics
Languages : en
Pages : 452
Book Description
The first in-depth, complete, and unified theoretical discussion of the two most important classes of algorithms for solving matrix eigenvalue problems: QR-like algorithms for dense problems and Krylov subspace methods for sparse problems. The author discusses the theory of the generic GR algorithm, including special cases (for example, QR, SR, HR), and the development of Krylov subspace methods. This book also addresses a generic Krylov process and the Arnoldi and various Lanczos algorithms, which are obtained as special cases. Theoretical and computational exercises guide students, step by step, to the results. Downloadable MATLAB programs, compiled by the author, are available on a supplementary Web site. Readers of this book are expected to be familiar with the basic ideas of linear algebra and to have had some experience with matrix computations. Ideal for graduate students, or as a reference book for researchers and users of eigenvalue codes.
Publisher: SIAM
ISBN: 9780898717808
Category : Mathematics
Languages : en
Pages : 452
Book Description
The first in-depth, complete, and unified theoretical discussion of the two most important classes of algorithms for solving matrix eigenvalue problems: QR-like algorithms for dense problems and Krylov subspace methods for sparse problems. The author discusses the theory of the generic GR algorithm, including special cases (for example, QR, SR, HR), and the development of Krylov subspace methods. This book also addresses a generic Krylov process and the Arnoldi and various Lanczos algorithms, which are obtained as special cases. Theoretical and computational exercises guide students, step by step, to the results. Downloadable MATLAB programs, compiled by the author, are available on a supplementary Web site. Readers of this book are expected to be familiar with the basic ideas of linear algebra and to have had some experience with matrix computations. Ideal for graduate students, or as a reference book for researchers and users of eigenvalue codes.
Matrix Computations
Author: Gene H. Golub
Publisher: JHU Press
ISBN: 1421408597
Category : Mathematics
Languages : en
Pages : 781
Book Description
A comprehensive treatment of numerical linear algebra from the standpoint of both theory and practice. The fourth edition of Gene H. Golub and Charles F. Van Loan's classic is an essential reference for computational scientists and engineers in addition to researchers in the numerical linear algebra community. Anyone whose work requires the solution to a matrix problem and an appreciation of its mathematical properties will find this book to be an indispensible tool. This revision is a cover-to-cover expansion and renovation of the third edition. It now includes an introduction to tensor computations and brand new sections on • fast transforms • parallel LU • discrete Poisson solvers • pseudospectra • structured linear equation problems • structured eigenvalue problems • large-scale SVD methods • polynomial eigenvalue problems Matrix Computations is packed with challenging problems, insightful derivations, and pointers to the literature—everything needed to become a matrix-savvy developer of numerical methods and software. The second most cited math book of 2012 according to MathSciNet, the book has placed in the top 10 for since 2005.
Publisher: JHU Press
ISBN: 1421408597
Category : Mathematics
Languages : en
Pages : 781
Book Description
A comprehensive treatment of numerical linear algebra from the standpoint of both theory and practice. The fourth edition of Gene H. Golub and Charles F. Van Loan's classic is an essential reference for computational scientists and engineers in addition to researchers in the numerical linear algebra community. Anyone whose work requires the solution to a matrix problem and an appreciation of its mathematical properties will find this book to be an indispensible tool. This revision is a cover-to-cover expansion and renovation of the third edition. It now includes an introduction to tensor computations and brand new sections on • fast transforms • parallel LU • discrete Poisson solvers • pseudospectra • structured linear equation problems • structured eigenvalue problems • large-scale SVD methods • polynomial eigenvalue problems Matrix Computations is packed with challenging problems, insightful derivations, and pointers to the literature—everything needed to become a matrix-savvy developer of numerical methods and software. The second most cited math book of 2012 according to MathSciNet, the book has placed in the top 10 for since 2005.
Numerical Continuation Methods
Author: Eugene L. Allgower
Publisher: Springer Science & Business Media
ISBN: 3642612571
Category : Mathematics
Languages : en
Pages : 402
Book Description
Over the past fifteen years two new techniques have yielded extremely important contributions toward the numerical solution of nonlinear systems of equations. This book provides an introduction to and an up-to-date survey of numerical continuation methods (tracing of implicitly defined curves) of both predictor-corrector and piecewise-linear types. It presents and analyzes implementations aimed at applications to the computation of zero points, fixed points, nonlinear eigenvalue problems, bifurcation and turning points, and economic equilibria. Many algorithms are presented in a pseudo code format. An appendix supplies five sample FORTRAN programs with numerical examples, which readers can adapt to fit their purposes, and a description of the program package SCOUT for analyzing nonlinear problems via piecewise-linear methods. An extensive up-to-date bibliography spanning 46 pages is included. The material in this book has been presented to students of mathematics, engineering and sciences with great success, and will also serve as a valuable tool for researchers in the field.
Publisher: Springer Science & Business Media
ISBN: 3642612571
Category : Mathematics
Languages : en
Pages : 402
Book Description
Over the past fifteen years two new techniques have yielded extremely important contributions toward the numerical solution of nonlinear systems of equations. This book provides an introduction to and an up-to-date survey of numerical continuation methods (tracing of implicitly defined curves) of both predictor-corrector and piecewise-linear types. It presents and analyzes implementations aimed at applications to the computation of zero points, fixed points, nonlinear eigenvalue problems, bifurcation and turning points, and economic equilibria. Many algorithms are presented in a pseudo code format. An appendix supplies five sample FORTRAN programs with numerical examples, which readers can adapt to fit their purposes, and a description of the program package SCOUT for analyzing nonlinear problems via piecewise-linear methods. An extensive up-to-date bibliography spanning 46 pages is included. The material in this book has been presented to students of mathematics, engineering and sciences with great success, and will also serve as a valuable tool for researchers in the field.
Proceedings of the Conference on Applied Mathematics and Scientific Computing
Author: Zlatko Drmac
Publisher: Springer Science & Business Media
ISBN: 1402031971
Category : Mathematics
Languages : en
Pages : 347
Book Description
This book brings together contributed papers presenting new results covering different areas of applied mathematics and scientific computing. Firstly, four invited lectures give state-of-the-art presentations in the fields of numerical linear algebra, shape preserving approximation and singular perturbation theory. Then an overview of numerical solutions to skew-Hamiltonian and Hamiltonian eigenvalue problems in system and control theory is given by Benner, Kressner and Mehrmann. The important issue of structure preserving algorithms and structured condition numbers is discussed. Costantini and Sampoli review the basic ideas of the abstract schemes and show that they can be used to solve any problem concerning the construction of spline curves subject to local constraints. Kvasov presents a novel approach in solving the problem of shape preserving spline interpolation. Formulating this problem as a differential multipoint boundary value problem for hyperbolic and biharmonic tension splines he considers its finite difference approximation. Miller and Shishkin consider the Black-Scholes equation that, for some values of the parameters, may be a singularly perturbed problem. They construct a new numerical method, on an appropriately fitted piecewise-uniform mesh, which is parameter-uniformly convergent.
Publisher: Springer Science & Business Media
ISBN: 1402031971
Category : Mathematics
Languages : en
Pages : 347
Book Description
This book brings together contributed papers presenting new results covering different areas of applied mathematics and scientific computing. Firstly, four invited lectures give state-of-the-art presentations in the fields of numerical linear algebra, shape preserving approximation and singular perturbation theory. Then an overview of numerical solutions to skew-Hamiltonian and Hamiltonian eigenvalue problems in system and control theory is given by Benner, Kressner and Mehrmann. The important issue of structure preserving algorithms and structured condition numbers is discussed. Costantini and Sampoli review the basic ideas of the abstract schemes and show that they can be used to solve any problem concerning the construction of spline curves subject to local constraints. Kvasov presents a novel approach in solving the problem of shape preserving spline interpolation. Formulating this problem as a differential multipoint boundary value problem for hyperbolic and biharmonic tension splines he considers its finite difference approximation. Miller and Shishkin consider the Black-Scholes equation that, for some values of the parameters, may be a singularly perturbed problem. They construct a new numerical method, on an appropriately fitted piecewise-uniform mesh, which is parameter-uniformly convergent.
Finite Element Methods for Eigenvalue Problems
Author: Jiguang Sun
Publisher: CRC Press
ISBN: 1482254654
Category : Mathematics
Languages : en
Pages : 368
Book Description
This book covers finite element methods for several typical eigenvalues that arise from science and engineering. Both theory and implementation are covered in depth at the graduate level. The background for typical eigenvalue problems is included along with functional analysis tools, finite element discretization methods, convergence analysis, techniques for matrix evaluation problems, and computer implementation. The book also presents new methods, such as the discontinuous Galerkin method, and new problems, such as the transmission eigenvalue problem.
Publisher: CRC Press
ISBN: 1482254654
Category : Mathematics
Languages : en
Pages : 368
Book Description
This book covers finite element methods for several typical eigenvalues that arise from science and engineering. Both theory and implementation are covered in depth at the graduate level. The background for typical eigenvalue problems is included along with functional analysis tools, finite element discretization methods, convergence analysis, techniques for matrix evaluation problems, and computer implementation. The book also presents new methods, such as the discontinuous Galerkin method, and new problems, such as the transmission eigenvalue problem.