Author: Umran S. Inan
Publisher: Cambridge University Press
ISBN: 1139497987
Category : Science
Languages : en
Pages : 405
Book Description
Beginning with the development of finite difference equations, and leading to the complete FDTD algorithm, this is a coherent introduction to the FDTD method (the method of choice for modeling Maxwell's equations). It provides students and professional engineers with everything they need to know to begin writing FDTD simulations from scratch and to develop a thorough understanding of the inner workings of commercial FDTD software. Stability, numerical dispersion, sources and boundary conditions are all discussed in detail, as are dispersive and anisotropic materials. A comparative introduction of the finite volume and finite element methods is also provided. All concepts are introduced from first principles, so no prior modeling experience is required, and they are made easier to understand through numerous illustrative examples and the inclusion of both intuitive explanations and mathematical derivations.
Numerical Electromagnetics
Author: Umran S. Inan
Publisher: Cambridge University Press
ISBN: 1139497987
Category : Science
Languages : en
Pages : 405
Book Description
Beginning with the development of finite difference equations, and leading to the complete FDTD algorithm, this is a coherent introduction to the FDTD method (the method of choice for modeling Maxwell's equations). It provides students and professional engineers with everything they need to know to begin writing FDTD simulations from scratch and to develop a thorough understanding of the inner workings of commercial FDTD software. Stability, numerical dispersion, sources and boundary conditions are all discussed in detail, as are dispersive and anisotropic materials. A comparative introduction of the finite volume and finite element methods is also provided. All concepts are introduced from first principles, so no prior modeling experience is required, and they are made easier to understand through numerous illustrative examples and the inclusion of both intuitive explanations and mathematical derivations.
Publisher: Cambridge University Press
ISBN: 1139497987
Category : Science
Languages : en
Pages : 405
Book Description
Beginning with the development of finite difference equations, and leading to the complete FDTD algorithm, this is a coherent introduction to the FDTD method (the method of choice for modeling Maxwell's equations). It provides students and professional engineers with everything they need to know to begin writing FDTD simulations from scratch and to develop a thorough understanding of the inner workings of commercial FDTD software. Stability, numerical dispersion, sources and boundary conditions are all discussed in detail, as are dispersive and anisotropic materials. A comparative introduction of the finite volume and finite element methods is also provided. All concepts are introduced from first principles, so no prior modeling experience is required, and they are made easier to understand through numerous illustrative examples and the inclusion of both intuitive explanations and mathematical derivations.
Numerical Methods in Electromagnetism
Author: M. V.K. Chari
Publisher: Academic Press
ISBN: 012615760X
Category : Mathematics
Languages : en
Pages : 783
Book Description
Electromagnetics is the foundation of our electric technology. It describes the fundamental principles upon which electricity is generated and used. This includes electric machines, high voltage transmission, telecommunication, radar, and recording and digital computing. Numerical Methods in Electromagnetism will serve both as an introductory text for graduate students and as a reference book for professional engineers and researchers. This book leads the uninitiated into the realm of numerical methods for solving electromagnetic field problems by examples and illustrations. Detailed descriptions of advanced techniques are also included for the benefit of working engineers and research students. Comprehensive descriptions of numerical methods In-depth introduction to finite differences, finite elements, and integral equations Illustrations and applications of linear and nonlinear solutions for multi-dimensional analysis Numerical examples to facilitate understanding of the methods Appendices for quick reference of mathematical and numerical methods employed
Publisher: Academic Press
ISBN: 012615760X
Category : Mathematics
Languages : en
Pages : 783
Book Description
Electromagnetics is the foundation of our electric technology. It describes the fundamental principles upon which electricity is generated and used. This includes electric machines, high voltage transmission, telecommunication, radar, and recording and digital computing. Numerical Methods in Electromagnetism will serve both as an introductory text for graduate students and as a reference book for professional engineers and researchers. This book leads the uninitiated into the realm of numerical methods for solving electromagnetic field problems by examples and illustrations. Detailed descriptions of advanced techniques are also included for the benefit of working engineers and research students. Comprehensive descriptions of numerical methods In-depth introduction to finite differences, finite elements, and integral equations Illustrations and applications of linear and nonlinear solutions for multi-dimensional analysis Numerical examples to facilitate understanding of the methods Appendices for quick reference of mathematical and numerical methods employed
Numerical Analysis for Electromagnetic Integral Equations
Author: Karl F. Warnick
Publisher: Artech House
ISBN: 1596933348
Category : Mathematics
Languages : en
Pages : 234
Book Description
Introduction -- Surface integral equation formulations and the method of moments -- Error analysis of the EFIE / with W.C. Chew -- Error analysis of the MFIE and CFIE / with C.P. Davis -- Geometrical singularities and the flat strip -- Resonant structures -- Error analysis for 3D problems -- Higher-order basis functions / with A.F. Peterson -- Operator spectra and iterative solution methods.
Publisher: Artech House
ISBN: 1596933348
Category : Mathematics
Languages : en
Pages : 234
Book Description
Introduction -- Surface integral equation formulations and the method of moments -- Error analysis of the EFIE / with W.C. Chew -- Error analysis of the MFIE and CFIE / with C.P. Davis -- Geometrical singularities and the flat strip -- Resonant structures -- Error analysis for 3D problems -- Higher-order basis functions / with A.F. Peterson -- Operator spectra and iterative solution methods.
Numerical Methods for Engineering
Author: Karl F. Warnick
Publisher: SciTech Publishing
ISBN: 9781839530739
Category : Technology & Engineering
Languages : en
Pages : 376
Book Description
The revised and updated second edition of this textbook teaches students to create computer codes used to engineer antennas, microwave circuits, and other critical technologies for wireless communications and other applications of electromagnetic fields and waves. Worked code examples are provided for MATLAB technical computing software.
Publisher: SciTech Publishing
ISBN: 9781839530739
Category : Technology & Engineering
Languages : en
Pages : 376
Book Description
The revised and updated second edition of this textbook teaches students to create computer codes used to engineer antennas, microwave circuits, and other critical technologies for wireless communications and other applications of electromagnetic fields and waves. Worked code examples are provided for MATLAB technical computing software.
Numerical Analysis of Electromagnetic Fields
Author: Pei-bai Zhou
Publisher: Springer Science & Business Media
ISBN: 3642503195
Category : Mathematics
Languages : en
Pages : 419
Book Description
Numerical methods for solving boundary value problems have developed rapidly. Knowledge of these methods is important both for engineers and scientists. There are many books published that deal with various approximate methods such as the finite element method, the boundary element method and so on. However, there is no textbook that includes all of these methods. This book is intended to fill this gap. The book is designed to be suitable for graduate students in engineering science, for senior undergraduate students as well as for scientists and engineers who are interested in electromagnetic fields. Objective Numerical calculation is the combination of mathematical methods and field theory. A great number of mathematical concepts, principles and techniques are discussed and many computational techniques are considered in dealing with practical problems. The purpose of this book is to provide students with a solid background in numerical analysis of the field problems. The book emphasizes the basic theories and universal principles of different numerical methods and describes why and how different methods work. Readers will then understand any methods which have not been introduced and will be able to develop their own new methods. Organization Many of the most important numerical methods are covered in this book. All of these are discussed and compared with each other so that the reader has a clear picture of their particular advantage, disadvantage and the relation between each of them. The book is divided into four parts and twelve chapters.
Publisher: Springer Science & Business Media
ISBN: 3642503195
Category : Mathematics
Languages : en
Pages : 419
Book Description
Numerical methods for solving boundary value problems have developed rapidly. Knowledge of these methods is important both for engineers and scientists. There are many books published that deal with various approximate methods such as the finite element method, the boundary element method and so on. However, there is no textbook that includes all of these methods. This book is intended to fill this gap. The book is designed to be suitable for graduate students in engineering science, for senior undergraduate students as well as for scientists and engineers who are interested in electromagnetic fields. Objective Numerical calculation is the combination of mathematical methods and field theory. A great number of mathematical concepts, principles and techniques are discussed and many computational techniques are considered in dealing with practical problems. The purpose of this book is to provide students with a solid background in numerical analysis of the field problems. The book emphasizes the basic theories and universal principles of different numerical methods and describes why and how different methods work. Readers will then understand any methods which have not been introduced and will be able to develop their own new methods. Organization Many of the most important numerical methods are covered in this book. All of these are discussed and compared with each other so that the reader has a clear picture of their particular advantage, disadvantage and the relation between each of them. The book is divided into four parts and twelve chapters.
Essentials of Computational Electromagnetics
Author: Xin-Qing Sheng
Publisher: John Wiley & Sons
ISBN: 0470829656
Category : Science
Languages : en
Pages : 291
Book Description
Essentials of Computational Electromagnetics provides an in-depth introduction of the three main full-wave numerical methods in computational electromagnetics (CEM); namely, the method of moment (MoM), the finite element method (FEM), and the finite-difference time-domain (FDTD) method. Numerous monographs can be found addressing one of the above three methods. However, few give a broad general overview of essentials embodied in these methods, or were published too early to include recent advances. Furthermore, many existing monographs only present the final numerical results without specifying practical issues, such as how to convert discretized formulations into computer programs, and the numerical characteristics of the computer programs. In this book, the authors elaborate the above three methods in CEM using practical case studies, explaining their own research experiences along with a review of current literature. A full analysis is provided for typical cases, including characteristics of numerical methods, helping beginners to develop a quick and deep understanding of the essentials of CEM. Outlines practical issues, such as how to convert discretized formulations into computer programs Gives typical computer programs and their numerical characteristics along with line by line explanations of programs Uses practical examples from the authors' own work as well as in the current literature Includes exercise problems to give readers a better understanding of the material Introduces the available commercial software and their limitations This book is intended for graduate-level students in antennas and propagation, microwaves, microelectronics, and electromagnetics. This text can also be used by researchers in electrical and electronic engineering, and software developers interested in writing their own code or understanding the detailed workings of code. Companion website for the book: www.wiley.com/go/sheng/cem
Publisher: John Wiley & Sons
ISBN: 0470829656
Category : Science
Languages : en
Pages : 291
Book Description
Essentials of Computational Electromagnetics provides an in-depth introduction of the three main full-wave numerical methods in computational electromagnetics (CEM); namely, the method of moment (MoM), the finite element method (FEM), and the finite-difference time-domain (FDTD) method. Numerous monographs can be found addressing one of the above three methods. However, few give a broad general overview of essentials embodied in these methods, or were published too early to include recent advances. Furthermore, many existing monographs only present the final numerical results without specifying practical issues, such as how to convert discretized formulations into computer programs, and the numerical characteristics of the computer programs. In this book, the authors elaborate the above three methods in CEM using practical case studies, explaining their own research experiences along with a review of current literature. A full analysis is provided for typical cases, including characteristics of numerical methods, helping beginners to develop a quick and deep understanding of the essentials of CEM. Outlines practical issues, such as how to convert discretized formulations into computer programs Gives typical computer programs and their numerical characteristics along with line by line explanations of programs Uses practical examples from the authors' own work as well as in the current literature Includes exercise problems to give readers a better understanding of the material Introduces the available commercial software and their limitations This book is intended for graduate-level students in antennas and propagation, microwaves, microelectronics, and electromagnetics. This text can also be used by researchers in electrical and electronic engineering, and software developers interested in writing their own code or understanding the detailed workings of code. Companion website for the book: www.wiley.com/go/sheng/cem
From Analytic to Numerical Electromagnetics: Contributions by C. Yeh and his collaborators
Author: C.Yeh
Publisher: Dog Ear Publishing
ISBN: 1457536250
Category : Science
Languages : en
Pages : 850
Book Description
Based on properly organized reprints by C. Yeh and his collaborators, innovative and original solutions to a number of fundamental problems, essential to the teaching and research in modern electromagnetics, are presented in From Analytic to Numerical Electromagnetics. The wide range of coverage from general applied theory to the pioneering development of canonical solutions and numerical methods offers a rare in-depth understanding of the methods used in solving complex problems in classical and modern electromagnetics. Selected specific examples of solved problems are: New derivation of boundary conditions, conditions for scalar wave approximation, completeness of the far-zone data, correct power loss calculation, limitations of directional coupler theory, calculation of noise temperature of lossy plate, canonical solutions for elliptic, parabolic or spheroidal dielectric structures, waves in periodic medium, focused beam scattering, relativistically moving medium, terahertz low-loss waveguides, WDM optical fiber solitons, particle radiation in complex medium, and being the first to develop these numerical methods - FEM, BPM, 4x4 Matrix Method, EBCM, TLM, and 2 Point Boundary Method - to solve complex Electromagnetics problems. Readers will find the subjects covered in this book to be a useful supplement to a standard advanced textbook on electromagnetics. To researchers and engineers, From Analytic to Numerical Electromagnetics will be a valuable reference and guide to obtain solutions to problems dealing with optical communications, optical solitons, photonics, and terahertz, plasmonic, metamaterial or nano waveguides.
Publisher: Dog Ear Publishing
ISBN: 1457536250
Category : Science
Languages : en
Pages : 850
Book Description
Based on properly organized reprints by C. Yeh and his collaborators, innovative and original solutions to a number of fundamental problems, essential to the teaching and research in modern electromagnetics, are presented in From Analytic to Numerical Electromagnetics. The wide range of coverage from general applied theory to the pioneering development of canonical solutions and numerical methods offers a rare in-depth understanding of the methods used in solving complex problems in classical and modern electromagnetics. Selected specific examples of solved problems are: New derivation of boundary conditions, conditions for scalar wave approximation, completeness of the far-zone data, correct power loss calculation, limitations of directional coupler theory, calculation of noise temperature of lossy plate, canonical solutions for elliptic, parabolic or spheroidal dielectric structures, waves in periodic medium, focused beam scattering, relativistically moving medium, terahertz low-loss waveguides, WDM optical fiber solitons, particle radiation in complex medium, and being the first to develop these numerical methods - FEM, BPM, 4x4 Matrix Method, EBCM, TLM, and 2 Point Boundary Method - to solve complex Electromagnetics problems. Readers will find the subjects covered in this book to be a useful supplement to a standard advanced textbook on electromagnetics. To researchers and engineers, From Analytic to Numerical Electromagnetics will be a valuable reference and guide to obtain solutions to problems dealing with optical communications, optical solitons, photonics, and terahertz, plasmonic, metamaterial or nano waveguides.
Mathematical Models and Numerical Simulation in Electromagnetism
Author: Alfredo Bermúdez de Castro
Publisher: Springer
ISBN: 3319029495
Category : Mathematics
Languages : en
Pages : 440
Book Description
The book represents a basic support for a master course in electromagnetism oriented to numerical simulation. The main goal of the book is that the reader knows the boundary-value problems of partial differential equations that should be solved in order to perform computer simulation of electromagnetic processes. Moreover it includes a part devoted to electric circuit theory based on ordinary differential equations. The book is mainly oriented to electric engineering applications, going from the general to the specific, namely, from the full Maxwell’s equations to the particular cases of electrostatics, direct current, magnetostatics and eddy currents models. Apart from standard exercises related to analytical calculus, the book includes some others oriented to real-life applications solved with MaxFEM free simulation software.
Publisher: Springer
ISBN: 3319029495
Category : Mathematics
Languages : en
Pages : 440
Book Description
The book represents a basic support for a master course in electromagnetism oriented to numerical simulation. The main goal of the book is that the reader knows the boundary-value problems of partial differential equations that should be solved in order to perform computer simulation of electromagnetic processes. Moreover it includes a part devoted to electric circuit theory based on ordinary differential equations. The book is mainly oriented to electric engineering applications, going from the general to the specific, namely, from the full Maxwell’s equations to the particular cases of electrostatics, direct current, magnetostatics and eddy currents models. Apart from standard exercises related to analytical calculus, the book includes some others oriented to real-life applications solved with MaxFEM free simulation software.
Computational Electromagnetics
Author: Anders Bondeson
Publisher: Springer Science & Business Media
ISBN: 0387261583
Category : Mathematics
Languages : en
Pages : 232
Book Description
Describes most popular computational methods used to solve problems in electromagnetics Matlab code is included throughout, so that the reader can implement the various techniques discussed Exercises included
Publisher: Springer Science & Business Media
ISBN: 0387261583
Category : Mathematics
Languages : en
Pages : 232
Book Description
Describes most popular computational methods used to solve problems in electromagnetics Matlab code is included throughout, so that the reader can implement the various techniques discussed Exercises included
Numerical Electromagnetics Code (NEC)
Author: G. J. Burke
Publisher:
ISBN:
Category : Antennas (Electronics)
Languages : en
Pages : 202
Book Description
Publisher:
ISBN:
Category : Antennas (Electronics)
Languages : en
Pages : 202
Book Description