Author: Kenneth Lange
Publisher: Springer Science & Business Media
ISBN: 1441959459
Category : Business & Economics
Languages : en
Pages : 606
Book Description
Numerical analysis is the study of computation and its accuracy, stability and often its implementation on a computer. This book focuses on the principles of numerical analysis and is intended to equip those readers who use statistics to craft their own software and to understand the advantages and disadvantages of different numerical methods.
Numerical Analysis for Statisticians
Author: Kenneth Lange
Publisher: Springer Science & Business Media
ISBN: 1441959459
Category : Business & Economics
Languages : en
Pages : 606
Book Description
Numerical analysis is the study of computation and its accuracy, stability and often its implementation on a computer. This book focuses on the principles of numerical analysis and is intended to equip those readers who use statistics to craft their own software and to understand the advantages and disadvantages of different numerical methods.
Publisher: Springer Science & Business Media
ISBN: 1441959459
Category : Business & Economics
Languages : en
Pages : 606
Book Description
Numerical analysis is the study of computation and its accuracy, stability and often its implementation on a computer. This book focuses on the principles of numerical analysis and is intended to equip those readers who use statistics to craft their own software and to understand the advantages and disadvantages of different numerical methods.
Numerical Methods of Statistics
Author: John F. Monahan
Publisher: Cambridge University Press
ISBN: 1139498002
Category : Computers
Languages : en
Pages : 465
Book Description
This book explains how computer software is designed to perform the tasks required for sophisticated statistical analysis. For statisticians, it examines the nitty-gritty computational problems behind statistical methods. For mathematicians and computer scientists, it looks at the application of mathematical tools to statistical problems. The first half of the book offers a basic background in numerical analysis that emphasizes issues important to statisticians. The next several chapters cover a broad array of statistical tools, such as maximum likelihood and nonlinear regression. The author also treats the application of numerical tools; numerical integration and random number generation are explained in a unified manner reflecting complementary views of Monte Carlo methods. Each chapter contains exercises that range from simple questions to research problems. Most of the examples are accompanied by demonstration and source code available from the author's website. New in this second edition are demonstrations coded in R, as well as new sections on linear programming and the Nelder–Mead search algorithm.
Publisher: Cambridge University Press
ISBN: 1139498002
Category : Computers
Languages : en
Pages : 465
Book Description
This book explains how computer software is designed to perform the tasks required for sophisticated statistical analysis. For statisticians, it examines the nitty-gritty computational problems behind statistical methods. For mathematicians and computer scientists, it looks at the application of mathematical tools to statistical problems. The first half of the book offers a basic background in numerical analysis that emphasizes issues important to statisticians. The next several chapters cover a broad array of statistical tools, such as maximum likelihood and nonlinear regression. The author also treats the application of numerical tools; numerical integration and random number generation are explained in a unified manner reflecting complementary views of Monte Carlo methods. Each chapter contains exercises that range from simple questions to research problems. Most of the examples are accompanied by demonstration and source code available from the author's website. New in this second edition are demonstrations coded in R, as well as new sections on linear programming and the Nelder–Mead search algorithm.
Computer Based Numerical & Statistical Techniques
Author: Goyal
Publisher: Firewall Media
ISBN: 9788170087830
Category :
Languages : en
Pages : 612
Book Description
Publisher: Firewall Media
ISBN: 9788170087830
Category :
Languages : en
Pages : 612
Book Description
Computational Methods for Numerical Analysis with R
Author: James P Howard, II
Publisher: CRC Press
ISBN: 1498723640
Category : Mathematics
Languages : en
Pages : 257
Book Description
Computational Methods for Numerical Analysis with R is an overview of traditional numerical analysis topics presented using R. This guide shows how common functions from linear algebra, interpolation, numerical integration, optimization, and differential equations can be implemented in pure R code. Every algorithm described is given with a complete function implementation in R, along with examples to demonstrate the function and its use. Computational Methods for Numerical Analysis with R is intended for those who already know R, but are interested in learning more about how the underlying algorithms work. As such, it is suitable for statisticians, economists, and engineers, and others with a computational and numerical background.
Publisher: CRC Press
ISBN: 1498723640
Category : Mathematics
Languages : en
Pages : 257
Book Description
Computational Methods for Numerical Analysis with R is an overview of traditional numerical analysis topics presented using R. This guide shows how common functions from linear algebra, interpolation, numerical integration, optimization, and differential equations can be implemented in pure R code. Every algorithm described is given with a complete function implementation in R, along with examples to demonstrate the function and its use. Computational Methods for Numerical Analysis with R is intended for those who already know R, but are interested in learning more about how the underlying algorithms work. As such, it is suitable for statisticians, economists, and engineers, and others with a computational and numerical background.
A Handbook of Numerical and Statistical Techniques
Author: J. H. Pollard
Publisher: CUP Archive
ISBN: 9780521297509
Category : Mathematics
Languages : en
Pages : 372
Book Description
This handbook is designed for experimental scientists, particularly those in the life sciences. It is for the non-specialist, and although it assumes only a little knowledge of statistics and mathematics, those with a deeper understanding will also find it useful. The book is directed at the scientist who wishes to solve his numerical and statistical problems on a programmable calculator, mini-computer or interactive terminal. The volume is also useful for the user of full-scale computer systems in that it describes how the large computer solves numerical and statistical problems. The book is divided into three parts. Part I deals with numerical techniques and Part II with statistical techniques. Part III is devoted to the method of least squares which can be regarded as both a statistical and numerical method. The handbook shows clearly how each calculation is performed. Each technique is illustrated by at least one example and there are worked examples and exercises throughout the volume.
Publisher: CUP Archive
ISBN: 9780521297509
Category : Mathematics
Languages : en
Pages : 372
Book Description
This handbook is designed for experimental scientists, particularly those in the life sciences. It is for the non-specialist, and although it assumes only a little knowledge of statistics and mathematics, those with a deeper understanding will also find it useful. The book is directed at the scientist who wishes to solve his numerical and statistical problems on a programmable calculator, mini-computer or interactive terminal. The volume is also useful for the user of full-scale computer systems in that it describes how the large computer solves numerical and statistical problems. The book is divided into three parts. Part I deals with numerical techniques and Part II with statistical techniques. Part III is devoted to the method of least squares which can be regarded as both a statistical and numerical method. The handbook shows clearly how each calculation is performed. Each technique is illustrated by at least one example and there are worked examples and exercises throughout the volume.
Elements of Statistical Computing
Author: R.A. Thisted
Publisher: Routledge
ISBN: 1351452746
Category : Mathematics
Languages : en
Pages : 456
Book Description
Statistics and computing share many close relationships. Computing now permeates every aspect of statistics, from pure description to the development of statistical theory. At the same time, the computational methods used in statistical work span much of computer science. Elements of Statistical Computing covers the broad usage of computing in statistics. It provides a comprehensive account of the most important computational statistics. Included are discussions of numerical analysis, numerical integration, and smoothing. The author give special attention to floating point standards and numerical analysis; iterative methods for both linear and nonlinear equation, such as Gauss-Seidel method and successive over-relaxation; and computational methods for missing data, such as the EM algorithm. Also covered are new areas of interest, such as the Kalman filter, projection-pursuit methods, density estimation, and other computer-intensive techniques.
Publisher: Routledge
ISBN: 1351452746
Category : Mathematics
Languages : en
Pages : 456
Book Description
Statistics and computing share many close relationships. Computing now permeates every aspect of statistics, from pure description to the development of statistical theory. At the same time, the computational methods used in statistical work span much of computer science. Elements of Statistical Computing covers the broad usage of computing in statistics. It provides a comprehensive account of the most important computational statistics. Included are discussions of numerical analysis, numerical integration, and smoothing. The author give special attention to floating point standards and numerical analysis; iterative methods for both linear and nonlinear equation, such as Gauss-Seidel method and successive over-relaxation; and computational methods for missing data, such as the EM algorithm. Also covered are new areas of interest, such as the Kalman filter, projection-pursuit methods, density estimation, and other computer-intensive techniques.
Mathematical and Statistical Methods for Genetic Analysis
Author: Kenneth Lange
Publisher: Springer Science & Business Media
ISBN: 0387217509
Category : Medical
Languages : en
Pages : 376
Book Description
Written to equip students in the mathematical siences to understand and model the epidemiological and experimental data encountered in genetics research. This second edition expands the original edition by over 100 pages and includes new material. Sprinkled throughout the chapters are many new problems.
Publisher: Springer Science & Business Media
ISBN: 0387217509
Category : Medical
Languages : en
Pages : 376
Book Description
Written to equip students in the mathematical siences to understand and model the epidemiological and experimental data encountered in genetics research. This second edition expands the original edition by over 100 pages and includes new material. Sprinkled throughout the chapters are many new problems.
Numerical and Statistical Methods with SCILAB for Science and Engineering
Author: Gilberto E. Urroz
Publisher:
ISBN:
Category : Engineering
Languages : en
Pages : 606
Book Description
Mathematics and statistics with the free software SCILAB (http://www-rocq.inria.fr/scilab/)
Publisher:
ISBN:
Category : Engineering
Languages : en
Pages : 606
Book Description
Mathematics and statistics with the free software SCILAB (http://www-rocq.inria.fr/scilab/)
Numerical Issues in Statistical Computing for the Social Scientist
Author: Micah Altman
Publisher: John Wiley & Sons
ISBN: 0471475742
Category : Mathematics
Languages : en
Pages : 349
Book Description
At last—a social scientist's guide through the pitfalls of modern statistical computing Addressing the current deficiency in the literature on statistical methods as they apply to the social and behavioral sciences, Numerical Issues in Statistical Computing for the Social Scientist seeks to provide readers with a unique practical guidebook to the numerical methods underlying computerized statistical calculations specific to these fields. The authors demonstrate that knowledge of these numerical methods and how they are used in statistical packages is essential for making accurate inferences. With the aid of key contributors from both the social and behavioral sciences, the authors have assembled a rich set of interrelated chapters designed to guide empirical social scientists through the potential minefield of modern statistical computing. Uniquely accessible and abounding in modern-day tools, tricks, and advice, the text successfully bridges the gap between the current level of social science methodology and the more sophisticated technical coverage usually associated with the statistical field. Highlights include: A focus on problems occurring in maximum likelihood estimation Integrated examples of statistical computing (using software packages such as the SAS, Gauss, Splus, R, Stata, LIMDEP, SPSS, WinBUGS, and MATLAB®) A guide to choosing accurate statistical packages Discussions of a multitude of computationally intensive statistical approaches such as ecological inference, Markov chain Monte Carlo, and spatial regression analysis Emphasis on specific numerical problems, statistical procedures, and their applications in the field Replications and re-analysis of published social science research, using innovative numerical methods Key numerical estimation issues along with the means of avoiding common pitfalls A related Web site includes test data for use in demonstrating numerical problems, code for applying the original methods described in the book, and an online bibliography of Web resources for the statistical computation Designed as an independent research tool, a professional reference, or a classroom supplement, the book presents a well-thought-out treatment of a complex and multifaceted field.
Publisher: John Wiley & Sons
ISBN: 0471475742
Category : Mathematics
Languages : en
Pages : 349
Book Description
At last—a social scientist's guide through the pitfalls of modern statistical computing Addressing the current deficiency in the literature on statistical methods as they apply to the social and behavioral sciences, Numerical Issues in Statistical Computing for the Social Scientist seeks to provide readers with a unique practical guidebook to the numerical methods underlying computerized statistical calculations specific to these fields. The authors demonstrate that knowledge of these numerical methods and how they are used in statistical packages is essential for making accurate inferences. With the aid of key contributors from both the social and behavioral sciences, the authors have assembled a rich set of interrelated chapters designed to guide empirical social scientists through the potential minefield of modern statistical computing. Uniquely accessible and abounding in modern-day tools, tricks, and advice, the text successfully bridges the gap between the current level of social science methodology and the more sophisticated technical coverage usually associated with the statistical field. Highlights include: A focus on problems occurring in maximum likelihood estimation Integrated examples of statistical computing (using software packages such as the SAS, Gauss, Splus, R, Stata, LIMDEP, SPSS, WinBUGS, and MATLAB®) A guide to choosing accurate statistical packages Discussions of a multitude of computationally intensive statistical approaches such as ecological inference, Markov chain Monte Carlo, and spatial regression analysis Emphasis on specific numerical problems, statistical procedures, and their applications in the field Replications and re-analysis of published social science research, using innovative numerical methods Key numerical estimation issues along with the means of avoiding common pitfalls A related Web site includes test data for use in demonstrating numerical problems, code for applying the original methods described in the book, and an online bibliography of Web resources for the statistical computation Designed as an independent research tool, a professional reference, or a classroom supplement, the book presents a well-thought-out treatment of a complex and multifaceted field.
C Programming: The Essentials for Engineers and Scientists
Author: David R. Brooks
Publisher: Springer Science & Business Media
ISBN: 146121484X
Category : Computers
Languages : en
Pages : 490
Book Description
This text teaches the essentials of C programming, concentrating on what readers need to know in order to produce stand-alone programs and so solve typical scientific and engineering problems. It is a learning-by-doing book, with many examples and exercises, and lays a foundation of scientific programming concepts and techniques that will prove valuable for those who might eventually move on to another language. Written for undergraduates who are familiar with computers and typical applications but are new to programming.
Publisher: Springer Science & Business Media
ISBN: 146121484X
Category : Computers
Languages : en
Pages : 490
Book Description
This text teaches the essentials of C programming, concentrating on what readers need to know in order to produce stand-alone programs and so solve typical scientific and engineering problems. It is a learning-by-doing book, with many examples and exercises, and lays a foundation of scientific programming concepts and techniques that will prove valuable for those who might eventually move on to another language. Written for undergraduates who are familiar with computers and typical applications but are new to programming.