Numerical Analysis of Multiscale Problems

Numerical Analysis of Multiscale Problems PDF Author: Ivan G. Graham
Publisher: Springer Science & Business Media
ISBN: 3642220614
Category : Mathematics
Languages : en
Pages : 376

Get Book Here

Book Description
The 91st London Mathematical Society Durham Symposium took place from July 5th to 15th 2010, with more than 100 international participants attending. The Symposium focused on Numerical Analysis of Multiscale Problems and this book contains 10 invited articles from some of the meeting's key speakers, covering a range of topics of contemporary interest in this area. Articles cover the analysis of forward and inverse PDE problems in heterogeneous media, high-frequency wave propagation, atomistic-continuum modeling and high-dimensional problems arising in modeling uncertainty. Novel upscaling and preconditioning techniques, as well as applications to turbulent multi-phase flow, and to problems of current interest in materials science are all addressed. As such this book presents the current state-of-the-art in the numerical analysis of multiscale problems and will be of interest to both practitioners and mathematicians working in those fields.

Numerical Analysis of Multiscale Problems

Numerical Analysis of Multiscale Problems PDF Author: Ivan G. Graham
Publisher: Springer Science & Business Media
ISBN: 3642220614
Category : Mathematics
Languages : en
Pages : 376

Get Book Here

Book Description
The 91st London Mathematical Society Durham Symposium took place from July 5th to 15th 2010, with more than 100 international participants attending. The Symposium focused on Numerical Analysis of Multiscale Problems and this book contains 10 invited articles from some of the meeting's key speakers, covering a range of topics of contemporary interest in this area. Articles cover the analysis of forward and inverse PDE problems in heterogeneous media, high-frequency wave propagation, atomistic-continuum modeling and high-dimensional problems arising in modeling uncertainty. Novel upscaling and preconditioning techniques, as well as applications to turbulent multi-phase flow, and to problems of current interest in materials science are all addressed. As such this book presents the current state-of-the-art in the numerical analysis of multiscale problems and will be of interest to both practitioners and mathematicians working in those fields.

Analysis, Modeling and Simulation of Multiscale Problems

Analysis, Modeling and Simulation of Multiscale Problems PDF Author: Alexander Mielke
Publisher: Springer Science & Business Media
ISBN: 3540356576
Category : Mathematics
Languages : en
Pages : 704

Get Book Here

Book Description
This book reports recent mathematical developments in the Programme "Analysis, Modeling and Simulation of Multiscale Problems", which started as a German research initiative in 2006. Multiscale problems occur in many fields of science, such as microstructures in materials, sharp-interface models, many-particle systems and motions on different spatial and temporal scales in quantum mechanics or in molecular dynamics. The book presents current mathematical foundations of modeling, and proposes efficient numerical treatment.

Multiscale Problems

Multiscale Problems PDF Author: Alain Damlamian
Publisher: World Scientific
ISBN: 9814366889
Category : Mathematics
Languages : en
Pages : 314

Get Book Here

Book Description
The focus of this is on the latest developments related to the analysis of problems in which several scales are presented. After a theoretical presentation of the theory of homogenization in the periodic case, the other contributions address a wide range of applications in the fields of elasticity (asymptotic behavior of nonlinear elastic thin structures, modeling of junction of a periodic family of rods with a plate) and fluid mechanics (stationary Navier?Stokes equations in porous media). Other applications concern the modeling of new composites (electromagnetic and piezoelectric materials) and imperfect transmission problems. A detailed approach of numerical finite element methods is also investigated.

Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale Problems

Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale Problems PDF Author: Clemens Pechstein
Publisher: Springer Science & Business Media
ISBN: 3642235883
Category : Mathematics
Languages : en
Pages : 329

Get Book Here

Book Description
Tearing and interconnecting methods, such as FETI, FETI-DP, BETI, etc., are among the most successful domain decomposition solvers for partial differential equations. The purpose of this book is to give a detailed and self-contained presentation of these methods, including the corresponding algorithms as well as a rigorous convergence theory. In particular, two issues are addressed that have not been covered in any monograph yet: the coupling of finite and boundary elements within the tearing and interconnecting framework including exterior problems, and the case of highly varying (multiscale) coefficients not resolved by the subdomain partitioning. In this context, the book offers a detailed view to an active and up-to-date area of research.

Numerical Analysis of Spectral Methods

Numerical Analysis of Spectral Methods PDF Author: David Gottlieb
Publisher: SIAM
ISBN: 0898710235
Category : Technology & Engineering
Languages : en
Pages : 167

Get Book Here

Book Description
A unified discussion of the formulation and analysis of special methods of mixed initial boundary-value problems. The focus is on the development of a new mathematical theory that explains why and how well spectral methods work. Included are interesting extensions of the classical numerical analysis.

Numerical Analysis

Numerical Analysis PDF Author: Brian Sutton
Publisher: SIAM
ISBN: 1611975700
Category : Mathematics
Languages : en
Pages : 448

Get Book Here

Book Description
This textbook develops the fundamental skills of numerical analysis: designing numerical methods, implementing them in computer code, and analyzing their accuracy and efficiency. A number of mathematical problems?interpolation, integration, linear systems, zero finding, and differential equations?are considered, and some of the most important methods for their solution are demonstrated and analyzed. Notable features of this book include the development of Chebyshev methods alongside more classical ones; a dual emphasis on theory and experimentation; the use of linear algebra to solve problems from analysis, which enables students to gain a greater appreciation for both subjects; and many examples and exercises. Numerical Analysis: Theory and Experiments is designed to be the primary text for a junior- or senior-level undergraduate course in numerical analysis for mathematics majors. Scientists and engineers interested in numerical methods, particularly those seeking an accessible introduction to Chebyshev methods, will also be interested in this book.

Numerical Methods and Analysis of Multiscale Problems

Numerical Methods and Analysis of Multiscale Problems PDF Author: Alexandre L. Madureira
Publisher: Springer
ISBN: 3319508660
Category : Mathematics
Languages : en
Pages : 129

Get Book Here

Book Description
This book is about numerical modeling of multiscale problems, and introduces several asymptotic analysis and numerical techniques which are necessary for a proper approximation of equations that depend on different physical scales. Aimed at advanced undergraduate and graduate students in mathematics, engineering and physics – or researchers seeking a no-nonsense approach –, it discusses examples in their simplest possible settings, removing mathematical hurdles that might hinder a clear understanding of the methods. The problems considered are given by singular perturbed reaction advection diffusion equations in one and two-dimensional domains, partial differential equations in domains with rough boundaries, and equations with oscillatory coefficients. This work shows how asymptotic analysis can be used to develop and analyze models and numerical methods that are robust and work well for a wide range of parameters.

Theoretical Numerical Analysis

Theoretical Numerical Analysis PDF Author: Kendall Atkinson
Publisher: Springer Science & Business Media
ISBN: 0387287698
Category : Mathematics
Languages : en
Pages : 583

Get Book Here

Book Description
Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scienti?c disciplines and a resurgence of interest in the modern as well as the cl- sical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mathematics (TAM). Thedevelopmentofnewcoursesisanaturalconsequenceofahighlevelof excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and to encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Ma- ematical Sciences (AMS) series, which will focus on advanced textbooks and research-level monographs.

Principles of Multiscale Modeling

Principles of Multiscale Modeling PDF Author: Weinan E
Publisher: Cambridge University Press
ISBN: 1107096545
Category : Mathematics
Languages : en
Pages : 485

Get Book Here

Book Description
A systematic discussion of the fundamental principles, written by a leading contributor to the field.

Multiscale Methods

Multiscale Methods PDF Author: Grigoris Pavliotis
Publisher: Springer Science & Business Media
ISBN: 0387738290
Category : Mathematics
Languages : en
Pages : 314

Get Book Here

Book Description
This introduction to multiscale methods gives you a broad overview of the methods’ many uses and applications. The book begins by setting the theoretical foundations of the methods and then moves on to develop models and prove theorems. Extensive use of examples shows how to apply multiscale methods to solving a variety of problems. Exercises then enable you to build your own skills and put them into practice. Extensions and generalizations of the results presented in the book, as well as references to the literature, are provided in the Discussion and Bibliography section at the end of each chapter.With the exception of Chapter One, all chapters are supplemented with exercises.