Numbers, Sets and Axioms

Numbers, Sets and Axioms PDF Author: A. G. Hamilton
Publisher: Cambridge University Press
ISBN: 9780521287616
Category : Mathematics
Languages : en
Pages : 272

Get Book Here

Book Description
Following the success of Logic for Mathematicians, Dr Hamilton has written a text for mathematicians and students of mathematics that contains a description and discussion of the fundamental conceptual and formal apparatus upon which modern pure mathematics relies. The author's intention is to remove some of the mystery that surrounds the foundations of mathematics. He emphasises the intuitive basis of mathematics; the basic notions are numbers and sets and they are considered both informally and formally. The role of axiom systems is part of the discussion but their limitations are pointed out. Formal set theory has its place in the book but Dr Hamilton recognises that this is a part of mathematics and not the basis on which it rests. Throughout, the abstract ideas are liberally illustrated by examples so this account should be well-suited, both specifically as a course text and, more broadly, as background reading. The reader is presumed to have some mathematical experience but no knowledge of mathematical logic is required.

Numbers, Sets and Axioms

Numbers, Sets and Axioms PDF Author: A. G. Hamilton
Publisher: Cambridge University Press
ISBN: 9780521287616
Category : Mathematics
Languages : en
Pages : 272

Get Book Here

Book Description
Following the success of Logic for Mathematicians, Dr Hamilton has written a text for mathematicians and students of mathematics that contains a description and discussion of the fundamental conceptual and formal apparatus upon which modern pure mathematics relies. The author's intention is to remove some of the mystery that surrounds the foundations of mathematics. He emphasises the intuitive basis of mathematics; the basic notions are numbers and sets and they are considered both informally and formally. The role of axiom systems is part of the discussion but their limitations are pointed out. Formal set theory has its place in the book but Dr Hamilton recognises that this is a part of mathematics and not the basis on which it rests. Throughout, the abstract ideas are liberally illustrated by examples so this account should be well-suited, both specifically as a course text and, more broadly, as background reading. The reader is presumed to have some mathematical experience but no knowledge of mathematical logic is required.

Set Theory for the Working Mathematician

Set Theory for the Working Mathematician PDF Author: Krzysztof Ciesielski
Publisher: Cambridge University Press
ISBN: 9780521594653
Category : Mathematics
Languages : en
Pages : 256

Get Book Here

Book Description
Presents those methods of modern set theory most applicable to other areas of pure mathematics.

Axiomatic Set Theory

Axiomatic Set Theory PDF Author: Patrick Suppes
Publisher: Courier Corporation
ISBN: 0486136876
Category : Mathematics
Languages : en
Pages : 290

Get Book Here

Book Description
Geared toward upper-level undergraduates and graduate students, this treatment examines the basic paradoxes and history of set theory and advanced topics such as relations and functions, equipollence, more. 1960 edition.

A Book of Set Theory

A Book of Set Theory PDF Author: Charles C Pinter
Publisher: Courier Corporation
ISBN: 0486497089
Category : Mathematics
Languages : en
Pages : 259

Get Book Here

Book Description
"This accessible approach to set theory for upper-level undergraduates poses rigorous but simple arguments. Each definition is accompanied by commentary that motivates and explains new concepts. A historical introduction is followed by discussions of classes and sets, functions, natural and cardinal numbers, the arithmetic of ordinal numbers, and related topics. 1971 edition with new material by the author"--

Principia Mathematica

Principia Mathematica PDF Author: Alfred North Whitehead
Publisher:
ISBN:
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 696

Get Book Here

Book Description


The Axiom of Choice

The Axiom of Choice PDF Author: Thomas J. Jech
Publisher: Courier Corporation
ISBN: 0486466248
Category : Mathematics
Languages : en
Pages : 226

Get Book Here

Book Description
Comprehensive and self-contained text examines the axiom's relative strengths and consequences, including its consistency and independence, relation to permutation models, and examples and counterexamples of its use. 1973 edition.

Elements of Set Theory

Elements of Set Theory PDF Author: Herbert B. Enderton
Publisher: Academic Press
ISBN: 0080570429
Category : Mathematics
Languages : en
Pages : 294

Get Book Here

Book Description
This is an introductory undergraduate textbook in set theory. In mathematics these days, essentially everything is a set. Some knowledge of set theory is necessary part of the background everyone needs for further study of mathematics. It is also possible to study set theory for its own interest--it is a subject with intruiging results anout simple objects. This book starts with material that nobody can do without. There is no end to what can be learned of set theory, but here is a beginning.

Notes on Set Theory

Notes on Set Theory PDF Author: Yiannis Moschovakis
Publisher: Springer Science & Business Media
ISBN: 1475741537
Category : Mathematics
Languages : en
Pages : 280

Get Book Here

Book Description
What this book is about. The theory of sets is a vibrant, exciting math ematical theory, with its own basic notions, fundamental results and deep open problems, and with significant applications to other mathematical theories. At the same time, axiomatic set theory is often viewed as a foun dation ofmathematics: it is alleged that all mathematical objects are sets, and their properties can be derived from the relatively few and elegant axioms about sets. Nothing so simple-minded can be quite true, but there is little doubt that in standard, current mathematical practice, "making a notion precise" is essentially synonymous with "defining it in set theory. " Set theory is the official language of mathematics, just as mathematics is the official language of science. Like most authors of elementary, introductory books about sets, I have tried to do justice to both aspects of the subject. From straight set theory, these Notes cover the basic facts about "ab stract sets," including the Axiom of Choice, transfinite recursion, and car dinal and ordinal numbers. Somewhat less common is the inclusion of a chapter on "pointsets" which focuses on results of interest to analysts and introduces the reader to the Continuum Problem, central to set theory from the very beginning.

Logic for Mathematicians

Logic for Mathematicians PDF Author: A. G. Hamilton
Publisher: Cambridge University Press
ISBN: 9780521368650
Category : Mathematics
Languages : en
Pages : 240

Get Book Here

Book Description
In Logic for Mathematicians, author Hamilton introduces the reader to the techniques and principle results of mathematical logic.

Analysis I

Analysis I PDF Author: Terence Tao
Publisher: Springer
ISBN: 9811017891
Category : Mathematics
Languages : en
Pages : 366

Get Book Here

Book Description
This is part one of a two-volume book on real analysis and is intended for senior undergraduate students of mathematics who have already been exposed to calculus. The emphasis is on rigour and foundations of analysis. Beginning with the construction of the number systems and set theory, the book discusses the basics of analysis (limits, series, continuity, differentiation, Riemann integration), through to power series, several variable calculus and Fourier analysis, and then finally the Lebesgue integral. These are almost entirely set in the concrete setting of the real line and Euclidean spaces, although there is some material on abstract metric and topological spaces. The book also has appendices on mathematical logic and the decimal system. The entire text (omitting some less central topics) can be taught in two quarters of 25–30 lectures each. The course material is deeply intertwined with the exercises, as it is intended that the student actively learn the material (and practice thinking and writing rigorously) by proving several of the key results in the theory.