Author: Neal Koblitz
Publisher: Springer Science & Business Media
ISBN: 1441985921
Category : Mathematics
Languages : en
Pages : 245
Book Description
This is a substantially revised and updated introduction to arithmetic topics, both ancient and modern, that have been at the centre of interest in applications of number theory, particularly in cryptography. As such, no background in algebra or number theory is assumed, and the book begins with a discussion of the basic number theory that is needed. The approach taken is algorithmic, emphasising estimates of the efficiency of the techniques that arise from the theory, and one special feature is the inclusion of recent applications of the theory of elliptic curves. Extensive exercises and careful answers are an integral part all of the chapters.
A Course in Number Theory and Cryptography
Author: Neal Koblitz
Publisher: Springer Science & Business Media
ISBN: 1441985921
Category : Mathematics
Languages : en
Pages : 245
Book Description
This is a substantially revised and updated introduction to arithmetic topics, both ancient and modern, that have been at the centre of interest in applications of number theory, particularly in cryptography. As such, no background in algebra or number theory is assumed, and the book begins with a discussion of the basic number theory that is needed. The approach taken is algorithmic, emphasising estimates of the efficiency of the techniques that arise from the theory, and one special feature is the inclusion of recent applications of the theory of elliptic curves. Extensive exercises and careful answers are an integral part all of the chapters.
Publisher: Springer Science & Business Media
ISBN: 1441985921
Category : Mathematics
Languages : en
Pages : 245
Book Description
This is a substantially revised and updated introduction to arithmetic topics, both ancient and modern, that have been at the centre of interest in applications of number theory, particularly in cryptography. As such, no background in algebra or number theory is assumed, and the book begins with a discussion of the basic number theory that is needed. The approach taken is algorithmic, emphasising estimates of the efficiency of the techniques that arise from the theory, and one special feature is the inclusion of recent applications of the theory of elliptic curves. Extensive exercises and careful answers are an integral part all of the chapters.
An Introduction to Number Theory with Cryptography
Author: James Kraft
Publisher: CRC Press
ISBN: 1351664107
Category : Computers
Languages : en
Pages : 409
Book Description
Building on the success of the first edition, An Introduction to Number Theory with Cryptography, Second Edition, increases coverage of the popular and important topic of cryptography, integrating it with traditional topics in number theory. The authors have written the text in an engaging style to reflect number theory's increasing popularity. The book is designed to be used by sophomore, junior, and senior undergraduates, but it is also accessible to advanced high school students and is appropriate for independent study. It includes a few more advanced topics for students who wish to explore beyond the traditional curriculum. Features of the second edition include Over 800 exercises, projects, and computer explorations Increased coverage of cryptography, including Vigenere, Stream, Transposition,and Block ciphers, along with RSA and discrete log-based systems "Check Your Understanding" questions for instant feedback to students New Appendices on "What is a proof?" and on Matrices Select basic (pre-RSA) cryptography now placed in an earlier chapter so that the topic can be covered right after the basic material on congruences Answers and hints for odd-numbered problems About the Authors: Jim Kraft received his Ph.D. from the University of Maryland in 1987 and has published several research papers in algebraic number theory. His previous teaching positions include the University of Rochester, St. Mary's College of California, and Ithaca College, and he has also worked in communications security. Dr. Kraft currently teaches mathematics at the Gilman School. Larry Washington received his Ph.D. from Princeton University in 1974 and has published extensively in number theory, including books on cryptography (with Wade Trappe), cyclotomic fields, and elliptic curves. Dr. Washington is currently Professor of Mathematics and Distinguished Scholar-Teacher at the University of Maryland.
Publisher: CRC Press
ISBN: 1351664107
Category : Computers
Languages : en
Pages : 409
Book Description
Building on the success of the first edition, An Introduction to Number Theory with Cryptography, Second Edition, increases coverage of the popular and important topic of cryptography, integrating it with traditional topics in number theory. The authors have written the text in an engaging style to reflect number theory's increasing popularity. The book is designed to be used by sophomore, junior, and senior undergraduates, but it is also accessible to advanced high school students and is appropriate for independent study. It includes a few more advanced topics for students who wish to explore beyond the traditional curriculum. Features of the second edition include Over 800 exercises, projects, and computer explorations Increased coverage of cryptography, including Vigenere, Stream, Transposition,and Block ciphers, along with RSA and discrete log-based systems "Check Your Understanding" questions for instant feedback to students New Appendices on "What is a proof?" and on Matrices Select basic (pre-RSA) cryptography now placed in an earlier chapter so that the topic can be covered right after the basic material on congruences Answers and hints for odd-numbered problems About the Authors: Jim Kraft received his Ph.D. from the University of Maryland in 1987 and has published several research papers in algebraic number theory. His previous teaching positions include the University of Rochester, St. Mary's College of California, and Ithaca College, and he has also worked in communications security. Dr. Kraft currently teaches mathematics at the Gilman School. Larry Washington received his Ph.D. from Princeton University in 1974 and has published extensively in number theory, including books on cryptography (with Wade Trappe), cyclotomic fields, and elliptic curves. Dr. Washington is currently Professor of Mathematics and Distinguished Scholar-Teacher at the University of Maryland.
Computational Number Theory and Modern Cryptography
Author: Song Y. Yan
Publisher: John Wiley & Sons
ISBN: 1118188586
Category : Computers
Languages : en
Pages : 432
Book Description
The only book to provide a unified view of the interplay between computational number theory and cryptography Computational number theory and modern cryptography are two of the most important and fundamental research fields in information security. In this book, Song Y. Yang combines knowledge of these two critical fields, providing a unified view of the relationships between computational number theory and cryptography. The author takes an innovative approach, presenting mathematical ideas first, thereupon treating cryptography as an immediate application of the mathematical concepts. The book also presents topics from number theory, which are relevant for applications in public-key cryptography, as well as modern topics, such as coding and lattice based cryptography for post-quantum cryptography. The author further covers the current research and applications for common cryptographic algorithms, describing the mathematical problems behind these applications in a manner accessible to computer scientists and engineers. Makes mathematical problems accessible to computer scientists and engineers by showing their immediate application Presents topics from number theory relevant for public-key cryptography applications Covers modern topics such as coding and lattice based cryptography for post-quantum cryptography Starts with the basics, then goes into applications and areas of active research Geared at a global audience; classroom tested in North America, Europe, and Asia Incudes exercises in every chapter Instructor resources available on the book’s Companion Website Computational Number Theory and Modern Cryptography is ideal for graduate and advanced undergraduate students in computer science, communications engineering, cryptography and mathematics. Computer scientists, practicing cryptographers, and other professionals involved in various security schemes will also find this book to be a helpful reference.
Publisher: John Wiley & Sons
ISBN: 1118188586
Category : Computers
Languages : en
Pages : 432
Book Description
The only book to provide a unified view of the interplay between computational number theory and cryptography Computational number theory and modern cryptography are two of the most important and fundamental research fields in information security. In this book, Song Y. Yang combines knowledge of these two critical fields, providing a unified view of the relationships between computational number theory and cryptography. The author takes an innovative approach, presenting mathematical ideas first, thereupon treating cryptography as an immediate application of the mathematical concepts. The book also presents topics from number theory, which are relevant for applications in public-key cryptography, as well as modern topics, such as coding and lattice based cryptography for post-quantum cryptography. The author further covers the current research and applications for common cryptographic algorithms, describing the mathematical problems behind these applications in a manner accessible to computer scientists and engineers. Makes mathematical problems accessible to computer scientists and engineers by showing their immediate application Presents topics from number theory relevant for public-key cryptography applications Covers modern topics such as coding and lattice based cryptography for post-quantum cryptography Starts with the basics, then goes into applications and areas of active research Geared at a global audience; classroom tested in North America, Europe, and Asia Incudes exercises in every chapter Instructor resources available on the book’s Companion Website Computational Number Theory and Modern Cryptography is ideal for graduate and advanced undergraduate students in computer science, communications engineering, cryptography and mathematics. Computer scientists, practicing cryptographers, and other professionals involved in various security schemes will also find this book to be a helpful reference.
Elementary Number Theory, Cryptography and Codes
Author: M. Welleda Baldoni
Publisher: Springer Science & Business Media
ISBN: 3540692002
Category : Mathematics
Languages : en
Pages : 530
Book Description
In this volume one finds basic techniques from algebra and number theory (e.g. congruences, unique factorization domains, finite fields, quadratic residues, primality tests, continued fractions, etc.) which in recent years have proven to be extremely useful for applications to cryptography and coding theory. Both cryptography and codes have crucial applications in our daily lives, and they are described here, while the complexity problems that arise in implementing the related numerical algorithms are also taken into due account. Cryptography has been developed in great detail, both in its classical and more recent aspects. In particular public key cryptography is extensively discussed, the use of algebraic geometry, specifically of elliptic curves over finite fields, is illustrated, and a final chapter is devoted to quantum cryptography, which is the new frontier of the field. Coding theory is not discussed in full; however a chapter, sufficient for a good introduction to the subject, has been devoted to linear codes. Each chapter ends with several complements and with an extensive list of exercises, the solutions to most of which are included in the last chapter. Though the book contains advanced material, such as cryptography on elliptic curves, Goppa codes using algebraic curves over finite fields, and the recent AKS polynomial primality test, the authors' objective has been to keep the exposition as self-contained and elementary as possible. Therefore the book will be useful to students and researchers, both in theoretical (e.g. mathematicians) and in applied sciences (e.g. physicists, engineers, computer scientists, etc.) seeking a friendly introduction to the important subjects treated here. The book will also be useful for teachers who intend to give courses on these topics.
Publisher: Springer Science & Business Media
ISBN: 3540692002
Category : Mathematics
Languages : en
Pages : 530
Book Description
In this volume one finds basic techniques from algebra and number theory (e.g. congruences, unique factorization domains, finite fields, quadratic residues, primality tests, continued fractions, etc.) which in recent years have proven to be extremely useful for applications to cryptography and coding theory. Both cryptography and codes have crucial applications in our daily lives, and they are described here, while the complexity problems that arise in implementing the related numerical algorithms are also taken into due account. Cryptography has been developed in great detail, both in its classical and more recent aspects. In particular public key cryptography is extensively discussed, the use of algebraic geometry, specifically of elliptic curves over finite fields, is illustrated, and a final chapter is devoted to quantum cryptography, which is the new frontier of the field. Coding theory is not discussed in full; however a chapter, sufficient for a good introduction to the subject, has been devoted to linear codes. Each chapter ends with several complements and with an extensive list of exercises, the solutions to most of which are included in the last chapter. Though the book contains advanced material, such as cryptography on elliptic curves, Goppa codes using algebraic curves over finite fields, and the recent AKS polynomial primality test, the authors' objective has been to keep the exposition as self-contained and elementary as possible. Therefore the book will be useful to students and researchers, both in theoretical (e.g. mathematicians) and in applied sciences (e.g. physicists, engineers, computer scientists, etc.) seeking a friendly introduction to the important subjects treated here. The book will also be useful for teachers who intend to give courses on these topics.
An Introduction to Mathematical Cryptography
Author: Jeffrey Hoffstein
Publisher: Springer
ISBN: 1493917110
Category : Mathematics
Languages : en
Pages : 549
Book Description
This self-contained introduction to modern cryptography emphasizes the mathematics behind the theory of public key cryptosystems and digital signature schemes. The book focuses on these key topics while developing the mathematical tools needed for the construction and security analysis of diverse cryptosystems. Only basic linear algebra is required of the reader; techniques from algebra, number theory, and probability are introduced and developed as required. This text provides an ideal introduction for mathematics and computer science students to the mathematical foundations of modern cryptography. The book includes an extensive bibliography and index; supplementary materials are available online. The book covers a variety of topics that are considered central to mathematical cryptography. Key topics include: classical cryptographic constructions, such as Diffie–Hellmann key exchange, discrete logarithm-based cryptosystems, the RSA cryptosystem, and digital signatures; fundamental mathematical tools for cryptography, including primality testing, factorization algorithms, probability theory, information theory, and collision algorithms; an in-depth treatment of important cryptographic innovations, such as elliptic curves, elliptic curve and pairing-based cryptography, lattices, lattice-based cryptography, and the NTRU cryptosystem. The second edition of An Introduction to Mathematical Cryptography includes a significant revision of the material on digital signatures, including an earlier introduction to RSA, Elgamal, and DSA signatures, and new material on lattice-based signatures and rejection sampling. Many sections have been rewritten or expanded for clarity, especially in the chapters on information theory, elliptic curves, and lattices, and the chapter of additional topics has been expanded to include sections on digital cash and homomorphic encryption. Numerous new exercises have been included.
Publisher: Springer
ISBN: 1493917110
Category : Mathematics
Languages : en
Pages : 549
Book Description
This self-contained introduction to modern cryptography emphasizes the mathematics behind the theory of public key cryptosystems and digital signature schemes. The book focuses on these key topics while developing the mathematical tools needed for the construction and security analysis of diverse cryptosystems. Only basic linear algebra is required of the reader; techniques from algebra, number theory, and probability are introduced and developed as required. This text provides an ideal introduction for mathematics and computer science students to the mathematical foundations of modern cryptography. The book includes an extensive bibliography and index; supplementary materials are available online. The book covers a variety of topics that are considered central to mathematical cryptography. Key topics include: classical cryptographic constructions, such as Diffie–Hellmann key exchange, discrete logarithm-based cryptosystems, the RSA cryptosystem, and digital signatures; fundamental mathematical tools for cryptography, including primality testing, factorization algorithms, probability theory, information theory, and collision algorithms; an in-depth treatment of important cryptographic innovations, such as elliptic curves, elliptic curve and pairing-based cryptography, lattices, lattice-based cryptography, and the NTRU cryptosystem. The second edition of An Introduction to Mathematical Cryptography includes a significant revision of the material on digital signatures, including an earlier introduction to RSA, Elgamal, and DSA signatures, and new material on lattice-based signatures and rejection sampling. Many sections have been rewritten or expanded for clarity, especially in the chapters on information theory, elliptic curves, and lattices, and the chapter of additional topics has been expanded to include sections on digital cash and homomorphic encryption. Numerous new exercises have been included.
Elliptic Curves
Author: Lawrence C. Washington
Publisher: CRC Press
ISBN: 1420071475
Category : Computers
Languages : en
Pages : 533
Book Description
Like its bestselling predecessor, Elliptic Curves: Number Theory and Cryptography, Second Edition develops the theory of elliptic curves to provide a basis for both number theoretic and cryptographic applications. With additional exercises, this edition offers more comprehensive coverage of the fundamental theory, techniques, and application
Publisher: CRC Press
ISBN: 1420071475
Category : Computers
Languages : en
Pages : 533
Book Description
Like its bestselling predecessor, Elliptic Curves: Number Theory and Cryptography, Second Edition develops the theory of elliptic curves to provide a basis for both number theoretic and cryptographic applications. With additional exercises, this edition offers more comprehensive coverage of the fundamental theory, techniques, and application
Understanding Cryptography
Author: Christof Paar
Publisher: Springer Science & Business Media
ISBN: 3642041019
Category : Computers
Languages : en
Pages : 382
Book Description
Cryptography is now ubiquitous – moving beyond the traditional environments, such as government communications and banking systems, we see cryptographic techniques realized in Web browsers, e-mail programs, cell phones, manufacturing systems, embedded software, smart buildings, cars, and even medical implants. Today's designers need a comprehensive understanding of applied cryptography. After an introduction to cryptography and data security, the authors explain the main techniques in modern cryptography, with chapters addressing stream ciphers, the Data Encryption Standard (DES) and 3DES, the Advanced Encryption Standard (AES), block ciphers, the RSA cryptosystem, public-key cryptosystems based on the discrete logarithm problem, elliptic-curve cryptography (ECC), digital signatures, hash functions, Message Authentication Codes (MACs), and methods for key establishment, including certificates and public-key infrastructure (PKI). Throughout the book, the authors focus on communicating the essentials and keeping the mathematics to a minimum, and they move quickly from explaining the foundations to describing practical implementations, including recent topics such as lightweight ciphers for RFIDs and mobile devices, and current key-length recommendations. The authors have considerable experience teaching applied cryptography to engineering and computer science students and to professionals, and they make extensive use of examples, problems, and chapter reviews, while the book’s website offers slides, projects and links to further resources. This is a suitable textbook for graduate and advanced undergraduate courses and also for self-study by engineers.
Publisher: Springer Science & Business Media
ISBN: 3642041019
Category : Computers
Languages : en
Pages : 382
Book Description
Cryptography is now ubiquitous – moving beyond the traditional environments, such as government communications and banking systems, we see cryptographic techniques realized in Web browsers, e-mail programs, cell phones, manufacturing systems, embedded software, smart buildings, cars, and even medical implants. Today's designers need a comprehensive understanding of applied cryptography. After an introduction to cryptography and data security, the authors explain the main techniques in modern cryptography, with chapters addressing stream ciphers, the Data Encryption Standard (DES) and 3DES, the Advanced Encryption Standard (AES), block ciphers, the RSA cryptosystem, public-key cryptosystems based on the discrete logarithm problem, elliptic-curve cryptography (ECC), digital signatures, hash functions, Message Authentication Codes (MACs), and methods for key establishment, including certificates and public-key infrastructure (PKI). Throughout the book, the authors focus on communicating the essentials and keeping the mathematics to a minimum, and they move quickly from explaining the foundations to describing practical implementations, including recent topics such as lightweight ciphers for RFIDs and mobile devices, and current key-length recommendations. The authors have considerable experience teaching applied cryptography to engineering and computer science students and to professionals, and they make extensive use of examples, problems, and chapter reviews, while the book’s website offers slides, projects and links to further resources. This is a suitable textbook for graduate and advanced undergraduate courses and also for self-study by engineers.
Number Theory and Cryptography
Author: Marc Fischlin
Publisher: Springer
ISBN: 364242001X
Category : Computers
Languages : en
Pages : 292
Book Description
Johannes Buchmann is internationally recognized as one of the leading figures in areas of computational number theory, cryptography and information security. He has published numerous scientific papers and books spanning a very wide spectrum of interests; besides R&D he also fulfilled lots of administrative tasks for instance building up and directing his research group CDC at Darmstadt, but he also served as the Dean of the Department of Computer Science at TU Darmstadt and then went on to become Vice President of the university for six years (2001-2007). This festschrift, published in honor of Johannes Buchmann on the occasion of his 60th birthday, contains contributions by some of his colleagues, former students and friends. The papers give an overview of Johannes Buchmann's research interests, ranging from computational number theory and the hardness of cryptographic assumptions to more application-oriented topics such as privacy and hardware security. With this book we celebrate Johannes Buchmann's vision and achievements.
Publisher: Springer
ISBN: 364242001X
Category : Computers
Languages : en
Pages : 292
Book Description
Johannes Buchmann is internationally recognized as one of the leading figures in areas of computational number theory, cryptography and information security. He has published numerous scientific papers and books spanning a very wide spectrum of interests; besides R&D he also fulfilled lots of administrative tasks for instance building up and directing his research group CDC at Darmstadt, but he also served as the Dean of the Department of Computer Science at TU Darmstadt and then went on to become Vice President of the university for six years (2001-2007). This festschrift, published in honor of Johannes Buchmann on the occasion of his 60th birthday, contains contributions by some of his colleagues, former students and friends. The papers give an overview of Johannes Buchmann's research interests, ranging from computational number theory and the hardness of cryptographic assumptions to more application-oriented topics such as privacy and hardware security. With this book we celebrate Johannes Buchmann's vision and achievements.
Number Theory and Cryptography
Author: J. H. Loxton
Publisher: Cambridge University Press
ISBN: 0521398770
Category : Mathematics
Languages : en
Pages : 249
Book Description
Papers presented by prominent contributors at a workshop on Number Theory and Cryptography, and the annual meeting of the Australian Mathematical Society.
Publisher: Cambridge University Press
ISBN: 0521398770
Category : Mathematics
Languages : en
Pages : 249
Book Description
Papers presented by prominent contributors at a workshop on Number Theory and Cryptography, and the annual meeting of the Australian Mathematical Society.
Cryptographic Applications of Analytic Number Theory
Author: Igor Shparlinski
Publisher: Springer Science & Business Media
ISBN: 9783764366544
Category : Computers
Languages : en
Pages : 434
Book Description
The book introduces new ways of using analytic number theory in cryptography and related areas, such as complexity theory and pseudorandom number generation. Cryptographers and number theorists will find this book useful. The former can learn about new number theoretic techniques which have proved to be invaluable cryptographic tools, the latter about new challenging areas of applications of their skills.
Publisher: Springer Science & Business Media
ISBN: 9783764366544
Category : Computers
Languages : en
Pages : 434
Book Description
The book introduces new ways of using analytic number theory in cryptography and related areas, such as complexity theory and pseudorandom number generation. Cryptographers and number theorists will find this book useful. The former can learn about new number theoretic techniques which have proved to be invaluable cryptographic tools, the latter about new challenging areas of applications of their skills.