Number Theoretic Density and Logical Limit Laws

Number Theoretic Density and Logical Limit Laws PDF Author: Stanley Burris
Publisher: American Mathematical Soc.
ISBN: 0821826662
Category : Mathematics
Languages : en
Pages : 313

Get Book Here

Book Description
This book shows how a study of generating series (power series in the additive case and Dirichlet series in the multiplicative case), combined with structure theorems for the finite models of a sentence, lead to general and powerful results on limit laws, including 0 - 1 laws. The book is unique in its approach to giving a combined treatment of topics from additive as well as from multiplicative number theory, in the setting of abstract number systems, emphasizing the remarkable parallels in the two subjects. Much evidence is collected to support the thesis that local results in additive systems lift to global results in multiplicative systems. All necessary material is given to understand thoroughly the method of Compton for proving logical limit laws, including a full treatment of Ehrenfeucht-Fraissé games, the Feferman-Vaught Theorem, and Skolem's quantifier elimination for finite Boolean algebras. An intriguing aspect of the book is to see so many interesting tools from elementary mathematics pull together to answer the question: What is the probability that a randomly chosen structure has a given property? Prerequisites are undergraduate analysis and some exposure to abstract systems.

Number Theoretic Density and Logical Limit Laws

Number Theoretic Density and Logical Limit Laws PDF Author: Stanley Burris
Publisher: American Mathematical Soc.
ISBN: 0821826662
Category : Mathematics
Languages : en
Pages : 313

Get Book Here

Book Description
This book shows how a study of generating series (power series in the additive case and Dirichlet series in the multiplicative case), combined with structure theorems for the finite models of a sentence, lead to general and powerful results on limit laws, including 0 - 1 laws. The book is unique in its approach to giving a combined treatment of topics from additive as well as from multiplicative number theory, in the setting of abstract number systems, emphasizing the remarkable parallels in the two subjects. Much evidence is collected to support the thesis that local results in additive systems lift to global results in multiplicative systems. All necessary material is given to understand thoroughly the method of Compton for proving logical limit laws, including a full treatment of Ehrenfeucht-Fraissé games, the Feferman-Vaught Theorem, and Skolem's quantifier elimination for finite Boolean algebras. An intriguing aspect of the book is to see so many interesting tools from elementary mathematics pull together to answer the question: What is the probability that a randomly chosen structure has a given property? Prerequisites are undergraduate analysis and some exposure to abstract systems.

Model Theoretic Methods in Finite Combinatorics

Model Theoretic Methods in Finite Combinatorics PDF Author: Martin Grohe
Publisher: American Mathematical Soc.
ISBN: 0821849433
Category : Mathematics
Languages : en
Pages : 529

Get Book Here

Book Description
This volume contains the proceedings of the AMS-ASL Special Session on Model Theoretic Methods in Finite Combinatorics, held January 5-8, 2009, in Washington, DC. Over the last 20 years, various new connections between model theory and finite combinatorics emerged. The best known of these are in the area of 0-1 laws, but in recent years other very promising interactions between model theory and combinatorics have been developed in areas such as extremal combinatorics and graph limits, graph polynomials, homomorphism functions and related counting functions, and discrete algorithms, touching the boundaries of computer science and statistical physics. This volume highlights some of the main results, techniques, and research directions of the area. Topics covered in this volume include recent developments on 0-1 laws and their variations, counting functions defined by homomorphisms and graph polynomials and their relation to logic, recurrences and spectra, the logical complexity of graphs, algorithmic meta theorems based on logic, universal and homogeneous structures, and logical aspects of Ramsey theory.

Mathematics and Computer Science II

Mathematics and Computer Science II PDF Author: Brigitte Chauvin
Publisher: Birkhäuser
ISBN: 3034882114
Category : Mathematics
Languages : en
Pages : 526

Get Book Here

Book Description
This is the second volume in a series of innovative proceedings entirely devoted to the connections between mathematics and computer science. Here mathematics and computer science are directly confronted and joined to tackle intricate problems in computer science with deep and innovative mathematical approaches. The book serves as an outstanding tool and a main information source for a large public in applied mathematics, discrete mathematics and computer science, including researchers, teachers, graduate students and engineers. It provides an overview of the current questions in computer science and the related modern and powerful mathematical methods. The range of applications is very wide and reaches beyond computer science.

Operators, Functions, and Systems - An Easy Reading

Operators, Functions, and Systems - An Easy Reading PDF Author: Nikolai K. Nikolski
Publisher: American Mathematical Soc.
ISBN: 0821852655
Category : Mathematics
Languages : en
Pages : 458

Get Book Here

Book Description
Together with the companion volume by the same author, Operators, Functions, and Systems: An Easy Reading. Volume 1: Hardy, Hankel, and Toeplitz, Mathematical Surveys and Monographs, Vol. 92, AMS, 2002, this unique work combines four major topics of modern analysis and its applications: A. Hardy classes of holomorphic functions, B. Spectral theory of Hankel and Toeplitz operators, C. Function models for linear operators and free interpolations, and D. Infinite-dimensional system theory and signal processing. This volume contains Parts C and D. Function models for linear operators and free interpolations: This is a universal topic and, indeed, is the most influential operator theory technique in the post-spectral-theorem era. In this book, its capacity is tested by solving generalized Carleson-type interpolation problems. Infinite-dimensional system theory and signal processing: This topic is the touchstone of the three previously developed techniques. The presence of this applied topic in a pure mathematics environment reflects important changes in the mathematical landscape of the last 20 years, in that the role of the main consumer and customer of harmonic, complex, and operator analysis has more and more passed from differential equations, scattering theory, and probability to control theory and signal processing. This and the companion volume are geared toward a wide audience of readers, from graduate students to professional mathematicians. They develop an elementary approach to the subject while retaining an expert level that can be applied in advanced analysis and selected applications.

Arithmetic Differential Equations

Arithmetic Differential Equations PDF Author: Alexandru Buium
Publisher: American Mathematical Soc.
ISBN: 0821838628
Category : Mathematics
Languages : en
Pages : 346

Get Book Here

Book Description
For most of the book the only prerequisites are the basic facts of algebraic geometry and number theory."--BOOK JACKET.

Polynomial Identities and Asymptotic Methods

Polynomial Identities and Asymptotic Methods PDF Author: A. Giambruno
Publisher: American Mathematical Soc.
ISBN: 0821838296
Category : Mathematics
Languages : en
Pages : 370

Get Book Here

Book Description
This book gives a state of the art approach to the study of polynomial identities satisfied by a given algebra by combining methods of ring theory, combinatorics, and representation theory of groups with analysis. The idea of applying analytical methods to the theory of polynomial identities appeared in the early 1970s and this approach has become one of the most powerful tools of the theory. A PI-algebra is any algebra satisfying at least one nontrivial polynomial identity. This includes the polynomial rings in one or several variables, the Grassmann algebra, finite-dimensional algebras, and many other algebras occurring naturally in mathematics. The core of the book is the proof that the sequence of co-dimensions of any PI-algebra has integral exponential growth - the PI-exponent of the algebra. Later chapters further apply these results to subjects such as a characterization of varieties of algebras having polynomial growth and a classification of varieties that are minimal for a given exponent.

The Concentration of Measure Phenomenon

The Concentration of Measure Phenomenon PDF Author: Michel Ledoux
Publisher: American Mathematical Soc.
ISBN: 0821837923
Category : Mathematics
Languages : en
Pages : 194

Get Book Here

Book Description
The observation of the concentration of measure phenomenon is inspired by isoperimetric inequalities. This book offers the basic techniques and examples of the concentration of measure phenomenon. It presents concentration functions and inequalities, isoperimetric and functional examples, spectrum and topological applications and product measures.

Fundamental Algebraic Geometry

Fundamental Algebraic Geometry PDF Author: Barbara Fantechi
Publisher: American Mathematical Soc.
ISBN: 0821842455
Category : Mathematics
Languages : en
Pages : 354

Get Book Here

Book Description
Presents an outline of Alexander Grothendieck's theories. This book discusses four main themes - descent theory, Hilbert and Quot schemes, the formal existence theorem, and the Picard scheme. It is suitable for those working in algebraic geometry.

Algebras, Lattices, Varieties

Algebras, Lattices, Varieties PDF Author: Ralph S. Freese
Publisher: American Mathematical Society
ISBN: 1470467984
Category : Mathematics
Languages : en
Pages : 451

Get Book Here

Book Description
This book is the third of a three-volume set of books on the theory of algebras, a study that provides a consistent framework for understanding algebraic systems, including groups, rings, modules, semigroups and lattices. Volume I, first published in the 1980s, built the foundations of the theory and is considered to be a classic in this field. The long-awaited volumes II and III are now available. Taken together, the three volumes provide a comprehensive picture of the state of art in general algebra today, and serve as a valuable resource for anyone working in the general theory of algebraic systems or in related fields. The two new volumes are arranged around six themes first introduced in Volume I. Volume II covers the Classification of Varieties, Equational Logic, and Rudiments of Model Theory, and Volume III covers Finite Algebras and their Clones, Abstract Clone Theory, and the Commutator. These topics are presented in six chapters with independent expositions, but are linked by themes and motifs that run through all three volumes.

Algebraic Geometric Codes: Basic Notions

Algebraic Geometric Codes: Basic Notions PDF Author: Michael Tsfasman
Publisher: American Mathematical Society
ISBN: 1470470071
Category : Mathematics
Languages : en
Pages : 338

Get Book Here

Book Description
The book is devoted to the theory of algebraic geometric codes, a subject formed on the border of several domains of mathematics. On one side there are such classical areas as algebraic geometry and number theory; on the other, information transmission theory, combinatorics, finite geometries, dense packings, etc. The authors give a unique perspective on the subject. Whereas most books on coding theory build up coding theory from within, starting from elementary concepts and almost always finishing without reaching a certain depth, this book constantly looks for interpretations that connect coding theory to algebraic geometry and number theory. There are no prerequisites other than a standard algebra graduate course. The first two chapters of the book can serve as an introduction to coding theory and algebraic geometry respectively. Special attention is given to the geometry of curves over finite fields in the third chapter. Finally, in the last chapter the authors explain relations between all of these: the theory of algebraic geometric codes.