Author: Joseph B. Lambert
Publisher: John Wiley & Sons
ISBN: 1119295238
Category : Science
Languages : en
Pages : 485
Book Description
Combines clear and concise discussions of key NMR concepts with succinct and illustrative examples Designed to cover a full course in Nuclear Magnetic Resonance (NMR) Spectroscopy, this text offers complete coverage of classic (one-dimensional) NMR as well as up-to-date coverage of two-dimensional NMR and other modern methods. It contains practical advice, theory, illustrated applications, and classroom-tested problems; looks at such important ideas as relaxation, NOEs, phase cycling, and processing parameters; and provides brief, yet fully comprehensible, examples. It also uniquely lists all of the general parameters for many experiments including mixing times, number of scans, relaxation times, and more. Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications, and Experimental Methods, 2nd Edition begins by introducing readers to NMR spectroscopy - an analytical technique used in modern chemistry, biochemistry, and biology that allows identification and characterization of organic, and some inorganic, compounds. It offers chapters covering: Experimental Methods; The Chemical Shift; The Coupling Constant; Further Topics in One-Dimensional NMR Spectroscopy; Two-Dimensional NMR Spectroscopy; Advanced Experimental Methods; and Structural Elucidation. Features classical analysis of chemical shifts and coupling constants for both protons and other nuclei, as well as modern multi‐pulse and multi-dimensional methods Contains experimental procedures and practical advice relative to the execution of NMR experiments Includes a chapter-long, worked-out problem that illustrates the application of nearly all current methods Offers appendices containing the theoretical basis of NMR, including the most modern approach that uses product operators and coherence-level diagrams By offering a balance between volumes aimed at NMR specialists and the structure-determination-only books that focus on synthetic organic chemists, Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications, and Experimental Methods, 2nd Edition is an excellent text for students and post-graduate students working in analytical and bio-sciences, as well as scientists who use NMR spectroscopy as a primary tool in their work.
Nuclear Magnetic Resonance Spectroscopy
Author: Joseph B. Lambert
Publisher: John Wiley & Sons
ISBN: 1119295238
Category : Science
Languages : en
Pages : 485
Book Description
Combines clear and concise discussions of key NMR concepts with succinct and illustrative examples Designed to cover a full course in Nuclear Magnetic Resonance (NMR) Spectroscopy, this text offers complete coverage of classic (one-dimensional) NMR as well as up-to-date coverage of two-dimensional NMR and other modern methods. It contains practical advice, theory, illustrated applications, and classroom-tested problems; looks at such important ideas as relaxation, NOEs, phase cycling, and processing parameters; and provides brief, yet fully comprehensible, examples. It also uniquely lists all of the general parameters for many experiments including mixing times, number of scans, relaxation times, and more. Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications, and Experimental Methods, 2nd Edition begins by introducing readers to NMR spectroscopy - an analytical technique used in modern chemistry, biochemistry, and biology that allows identification and characterization of organic, and some inorganic, compounds. It offers chapters covering: Experimental Methods; The Chemical Shift; The Coupling Constant; Further Topics in One-Dimensional NMR Spectroscopy; Two-Dimensional NMR Spectroscopy; Advanced Experimental Methods; and Structural Elucidation. Features classical analysis of chemical shifts and coupling constants for both protons and other nuclei, as well as modern multi‐pulse and multi-dimensional methods Contains experimental procedures and practical advice relative to the execution of NMR experiments Includes a chapter-long, worked-out problem that illustrates the application of nearly all current methods Offers appendices containing the theoretical basis of NMR, including the most modern approach that uses product operators and coherence-level diagrams By offering a balance between volumes aimed at NMR specialists and the structure-determination-only books that focus on synthetic organic chemists, Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications, and Experimental Methods, 2nd Edition is an excellent text for students and post-graduate students working in analytical and bio-sciences, as well as scientists who use NMR spectroscopy as a primary tool in their work.
Publisher: John Wiley & Sons
ISBN: 1119295238
Category : Science
Languages : en
Pages : 485
Book Description
Combines clear and concise discussions of key NMR concepts with succinct and illustrative examples Designed to cover a full course in Nuclear Magnetic Resonance (NMR) Spectroscopy, this text offers complete coverage of classic (one-dimensional) NMR as well as up-to-date coverage of two-dimensional NMR and other modern methods. It contains practical advice, theory, illustrated applications, and classroom-tested problems; looks at such important ideas as relaxation, NOEs, phase cycling, and processing parameters; and provides brief, yet fully comprehensible, examples. It also uniquely lists all of the general parameters for many experiments including mixing times, number of scans, relaxation times, and more. Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications, and Experimental Methods, 2nd Edition begins by introducing readers to NMR spectroscopy - an analytical technique used in modern chemistry, biochemistry, and biology that allows identification and characterization of organic, and some inorganic, compounds. It offers chapters covering: Experimental Methods; The Chemical Shift; The Coupling Constant; Further Topics in One-Dimensional NMR Spectroscopy; Two-Dimensional NMR Spectroscopy; Advanced Experimental Methods; and Structural Elucidation. Features classical analysis of chemical shifts and coupling constants for both protons and other nuclei, as well as modern multi‐pulse and multi-dimensional methods Contains experimental procedures and practical advice relative to the execution of NMR experiments Includes a chapter-long, worked-out problem that illustrates the application of nearly all current methods Offers appendices containing the theoretical basis of NMR, including the most modern approach that uses product operators and coherence-level diagrams By offering a balance between volumes aimed at NMR specialists and the structure-determination-only books that focus on synthetic organic chemists, Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications, and Experimental Methods, 2nd Edition is an excellent text for students and post-graduate students working in analytical and bio-sciences, as well as scientists who use NMR spectroscopy as a primary tool in their work.
Alpha-, Beta- and Gamma-Ray Spectroscopy
Author: K. Siegbahn
Publisher: Elsevier
ISBN: 0444596992
Category : Science
Languages : en
Pages : 915
Book Description
Alpha-, Beta- and Gamma-Ray Spectroscopy Volume 1 offers a comprehensive account of radioactivity and related low-energy phenomena. It summarizes progress in the field of alpha-, beta- and gamma-ray spectroscopy, including the discovery of the non-conservation of parity, as well as new experimental methods that elucidate the processes of weak interactions in general and beta-decay in particular. Comprised of 14 chapters, the book presents experimental methods and theoretical discussions and calculations to maintain the link between experiment and theory. It begins with a discussion of the interaction of electrons and alpha particles with matter. The book explains the elastic scattering of electrons by atomic nuclei and the interaction between gamma-radiation and matter. It then introduces topic on beta-ray spectrometer theory and design and crystal diffraction spectroscopy of nuclear gamma rays. Moreover, the book discusses the applications of the scintillation counter; proportional counting in gases; and the general processes and procedures used in determining disintegration schemes through a study of the beta- and gamma-rays emitted. In addition, it covers the nuclear shell model; collective nuclear motion and the unified model; and alpha-decay conservation laws. The emissions of gamma-radiation during charged particle bombardment and from fission fragments, as well as the neutron-capture radiation spectroscopy, are also explained. Experimentalists will find this book extremely useful.
Publisher: Elsevier
ISBN: 0444596992
Category : Science
Languages : en
Pages : 915
Book Description
Alpha-, Beta- and Gamma-Ray Spectroscopy Volume 1 offers a comprehensive account of radioactivity and related low-energy phenomena. It summarizes progress in the field of alpha-, beta- and gamma-ray spectroscopy, including the discovery of the non-conservation of parity, as well as new experimental methods that elucidate the processes of weak interactions in general and beta-decay in particular. Comprised of 14 chapters, the book presents experimental methods and theoretical discussions and calculations to maintain the link between experiment and theory. It begins with a discussion of the interaction of electrons and alpha particles with matter. The book explains the elastic scattering of electrons by atomic nuclei and the interaction between gamma-radiation and matter. It then introduces topic on beta-ray spectrometer theory and design and crystal diffraction spectroscopy of nuclear gamma rays. Moreover, the book discusses the applications of the scintillation counter; proportional counting in gases; and the general processes and procedures used in determining disintegration schemes through a study of the beta- and gamma-rays emitted. In addition, it covers the nuclear shell model; collective nuclear motion and the unified model; and alpha-decay conservation laws. The emissions of gamma-radiation during charged particle bombardment and from fission fragments, as well as the neutron-capture radiation spectroscopy, are also explained. Experimentalists will find this book extremely useful.
Nuclear Magnetic Resonance Spectroscopy
Author: Frank Alden Bovey
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 420
Book Description
Nine chapters cover: fundamental principles; experimental methods; the chemical shift; coupling of nuclear spins; nuclear relaxation and chemical rate processes; two-dimensional nuclear magnetic resonance spectroscopy; macromolecules; NMR of solids; special topics. Annotation copyrighted by Book News, Inc., Portland, OR
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 420
Book Description
Nine chapters cover: fundamental principles; experimental methods; the chemical shift; coupling of nuclear spins; nuclear relaxation and chemical rate processes; two-dimensional nuclear magnetic resonance spectroscopy; macromolecules; NMR of solids; special topics. Annotation copyrighted by Book News, Inc., Portland, OR
Nuclear Spectroscopy and Reactions 40-A
Author: Joseph Cerny
Publisher: Elsevier
ISBN: 0323146708
Category : Science
Languages : en
Pages : 539
Book Description
Nuclear Spectroscopy and Reactions, Part A covers information regarding the development of nuclear spectroscopy and its reactions, while emphasizing in-beam spectroscopy. This part specifically covers concerns regarding accelerators, specialized auxiliary equipment, and measurement techniques for charged particles and gamma rays. Organized into three major sections, this book first discusses accelerators in low- and intermediate-energy nuclear physics, and then covers electrostatic accelerators, cyclotron, and specialized accelerators. The second section covers polarized beam and targets, as well as on-line mass separations. The last section discusses the measurement of charged particle and gamma ray spectra including the detection of semiconductor radiation, large Nal, and charged particles. This book is written to primarily benefit graduate students who are engaged in research that concerns nuclear spectroscopy.
Publisher: Elsevier
ISBN: 0323146708
Category : Science
Languages : en
Pages : 539
Book Description
Nuclear Spectroscopy and Reactions, Part A covers information regarding the development of nuclear spectroscopy and its reactions, while emphasizing in-beam spectroscopy. This part specifically covers concerns regarding accelerators, specialized auxiliary equipment, and measurement techniques for charged particles and gamma rays. Organized into three major sections, this book first discusses accelerators in low- and intermediate-energy nuclear physics, and then covers electrostatic accelerators, cyclotron, and specialized accelerators. The second section covers polarized beam and targets, as well as on-line mass separations. The last section discusses the measurement of charged particle and gamma ray spectra including the detection of semiconductor radiation, large Nal, and charged particles. This book is written to primarily benefit graduate students who are engaged in research that concerns nuclear spectroscopy.
Atomic and Nuclear Analytical Methods
Author: Hem Raj Verma
Publisher: Springer Science & Business Media
ISBN: 3540302794
Category : Technology & Engineering
Languages : en
Pages : 382
Book Description
This book compares and offers a comprehensive overview of nine analytical techniques important in material science and many other branches of science. All these methods are already well adapted to applications in diverse fields such as medical, environmental studies, archaeology, and materials science. This clearly presented reference describes and compares the principles of the methods and the various source and detector types.
Publisher: Springer Science & Business Media
ISBN: 3540302794
Category : Technology & Engineering
Languages : en
Pages : 382
Book Description
This book compares and offers a comprehensive overview of nine analytical techniques important in material science and many other branches of science. All these methods are already well adapted to applications in diverse fields such as medical, environmental studies, archaeology, and materials science. This clearly presented reference describes and compares the principles of the methods and the various source and detector types.
Nuclear Data
Author: David Gareth Jenkins
Publisher:
ISBN: 9780750326735
Category : Nuclear physics
Languages : en
Pages : 0
Book Description
This book introduces nuclear data to the newcomer and provides a basic introduction to the role of nuclear data as the foundation of nuclear structure study. The material presented assumes no prior knowledge of the content or language used in communicating details of nuclear data. The approach builds on basic concepts: from gross properties of nuclei, through properties of quantum excited states, to simple model perspectives. The role of spectroscopy is thoroughly integrated, across all types of measurements, with many illustrations, to show how properties of nuclei are deduced. The basic technical methods needed for the deduction of nuclear properties from raw data are presented in animated figures, video tutorials, and accompanying PowerPointa presentations. The level of presentation provides access for students and researchers in applied areas that use nuclear data, e.g., medical applications and nuclear security. Overall, the book focuses on pedagogy and accessibility to the data aspect of nuclear physics. Part of IOP Series in Nuclear Spectroscopy and Nuclear Structure.
Publisher:
ISBN: 9780750326735
Category : Nuclear physics
Languages : en
Pages : 0
Book Description
This book introduces nuclear data to the newcomer and provides a basic introduction to the role of nuclear data as the foundation of nuclear structure study. The material presented assumes no prior knowledge of the content or language used in communicating details of nuclear data. The approach builds on basic concepts: from gross properties of nuclei, through properties of quantum excited states, to simple model perspectives. The role of spectroscopy is thoroughly integrated, across all types of measurements, with many illustrations, to show how properties of nuclei are deduced. The basic technical methods needed for the deduction of nuclear properties from raw data are presented in animated figures, video tutorials, and accompanying PowerPointa presentations. The level of presentation provides access for students and researchers in applied areas that use nuclear data, e.g., medical applications and nuclear security. Overall, the book focuses on pedagogy and accessibility to the data aspect of nuclear physics. Part of IOP Series in Nuclear Spectroscopy and Nuclear Structure.
Nuclear Magnetic Resonance Spectroscopy
Author: John Henry Nelson
Publisher:
ISBN:
Category : Education
Languages : en
Pages : 488
Book Description
This is the only how-to volume that investigates the spectroscopy of a variety of nuclides other than H andC in depth. It contains extensive reference material and numerous problems, most of which include real spectra. It is written to provide users with the knowledge necessary to choose the most appropriate experiment to obtain the best quality spectra with the ability to fully interpret the data. The book covers basic theory of NMR spectroscopy, spectrum measurement, the chemical shift and examples for selected nuclei, symmetry and NMR spectroscopy, spin-spin coupling and NMR spin systems, typical magnitude of selected coupling constants, nuclear spin relaxation, the nuclear overhauser effect, editing C NMR spectra, two-dimensional NMR spectroscopy, dynamic NMR spectroscopy, lanthanide shift reagents (LSR), NMR of solids. For NMR spectroscopists and analytical chemists.
Publisher:
ISBN:
Category : Education
Languages : en
Pages : 488
Book Description
This is the only how-to volume that investigates the spectroscopy of a variety of nuclides other than H andC in depth. It contains extensive reference material and numerous problems, most of which include real spectra. It is written to provide users with the knowledge necessary to choose the most appropriate experiment to obtain the best quality spectra with the ability to fully interpret the data. The book covers basic theory of NMR spectroscopy, spectrum measurement, the chemical shift and examples for selected nuclei, symmetry and NMR spectroscopy, spin-spin coupling and NMR spin systems, typical magnitude of selected coupling constants, nuclear spin relaxation, the nuclear overhauser effect, editing C NMR spectra, two-dimensional NMR spectroscopy, dynamic NMR spectroscopy, lanthanide shift reagents (LSR), NMR of solids. For NMR spectroscopists and analytical chemists.
Nuclear Magnetic Resonance Spectroscopy of Boron Compounds
Author: Heinrich Nöth
Publisher: Springer Science & Business Media
ISBN: 3642667570
Category : Science
Languages : en
Pages : 474
Book Description
The revolutionary impetus of the NMR methods in organic chemistry has parallels in the field of boron chemistry. lIB NMR spectroscopy provided a basis for the elucida tion of structures and reactions of the boron hydrides. However, although many studies have been carried out with the higher boranes, carboranes, metalloboranes, etc. , and although certain patterns have emerged, the correlation between the observed chemical shift and the assigned structural unit is still not fully understood. Therefore, predictions in this area are still rather limited, and semiquantitative interpretations are not yet pos sible. Several years ago Eaton and Lipscomb sUpImarized the status in this field in their book "NMR Studies of Boron Hydrides and Related Compounds" and a plethora of new data has accumulated since then. The book also contained material on simple bo rane derivatives, but they were not discussed in any detail. On the other hand many systematic studies, both synthetic and spectroscopic, have been conducted on these simple boron materials in the last decade. Thus a large amount of NMR information is available, not only on lIB but also on 1 H, 1 3 C, and 14 N. However, this information is widely scattered in the literature, and often the data are not discussed at all. It see med appropriate, therefore, to collect these data and to present them in one volume.
Publisher: Springer Science & Business Media
ISBN: 3642667570
Category : Science
Languages : en
Pages : 474
Book Description
The revolutionary impetus of the NMR methods in organic chemistry has parallels in the field of boron chemistry. lIB NMR spectroscopy provided a basis for the elucida tion of structures and reactions of the boron hydrides. However, although many studies have been carried out with the higher boranes, carboranes, metalloboranes, etc. , and although certain patterns have emerged, the correlation between the observed chemical shift and the assigned structural unit is still not fully understood. Therefore, predictions in this area are still rather limited, and semiquantitative interpretations are not yet pos sible. Several years ago Eaton and Lipscomb sUpImarized the status in this field in their book "NMR Studies of Boron Hydrides and Related Compounds" and a plethora of new data has accumulated since then. The book also contained material on simple bo rane derivatives, but they were not discussed in any detail. On the other hand many systematic studies, both synthetic and spectroscopic, have been conducted on these simple boron materials in the last decade. Thus a large amount of NMR information is available, not only on lIB but also on 1 H, 1 3 C, and 14 N. However, this information is widely scattered in the literature, and often the data are not discussed at all. It see med appropriate, therefore, to collect these data and to present them in one volume.
Laser Assisted Nuclear Decay Spectroscopy
Author: Kara Marie Lynch
Publisher: Springer
ISBN: 9783319361383
Category : Science
Languages : en
Pages : 0
Book Description
This work details an application of collinear resonance ionization spectroscopy for the separation of short-lived isomeric states and their subsequent study with decay spectroscopy. It reports the successful construction of a novel decay spectroscopy apparatus that can operate at pressures below 1 x 10^-9 mbar. The method is demonstrated by separating the nuclear ground and isomeric states of 204Fr and performing alpha-decay spectroscopy. An equivalent mass spectrometer would require 4.6 million times as much resolution to achieve the same result. This work unambiguously confirms the existence of a second isomeric state in 204Fr. The author also demonstrates the effectiveness of this method for laser spectroscopy and identification of hyperfine-structure components with energy tagging. This method was successfully used in 202Fr to identify ground and isomeric states. The measurement of 202Fr reported in this thesis demonstrates a factor of 100 improvement in sensitivity compared to state-of-the-art fluorescence techniques. The work reported in this thesis won the author the IOP Nuclear Physics Group Early Career Prize.
Publisher: Springer
ISBN: 9783319361383
Category : Science
Languages : en
Pages : 0
Book Description
This work details an application of collinear resonance ionization spectroscopy for the separation of short-lived isomeric states and their subsequent study with decay spectroscopy. It reports the successful construction of a novel decay spectroscopy apparatus that can operate at pressures below 1 x 10^-9 mbar. The method is demonstrated by separating the nuclear ground and isomeric states of 204Fr and performing alpha-decay spectroscopy. An equivalent mass spectrometer would require 4.6 million times as much resolution to achieve the same result. This work unambiguously confirms the existence of a second isomeric state in 204Fr. The author also demonstrates the effectiveness of this method for laser spectroscopy and identification of hyperfine-structure components with energy tagging. This method was successfully used in 202Fr to identify ground and isomeric states. The measurement of 202Fr reported in this thesis demonstrates a factor of 100 improvement in sensitivity compared to state-of-the-art fluorescence techniques. The work reported in this thesis won the author the IOP Nuclear Physics Group Early Career Prize.
Shell-model Applications in Nuclear Spectroscopy
Author: P. J. Brussaard
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 474
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 474
Book Description