NOx Reduction in Rich Catalytic Quick Lean Combustion of Synthesis Gas and in Ethanol Selective Catalytic Reduction

NOx Reduction in Rich Catalytic Quick Lean Combustion of Synthesis Gas and in Ethanol Selective Catalytic Reduction PDF Author: Yuk Fai Tham
Publisher:
ISBN:
Category :
Languages : en
Pages : 322

Get Book Here

Book Description

NOx Reduction in Rich Catalytic Quick Lean Combustion of Synthesis Gas and in Ethanol Selective Catalytic Reduction

NOx Reduction in Rich Catalytic Quick Lean Combustion of Synthesis Gas and in Ethanol Selective Catalytic Reduction PDF Author: Yuk Fai Tham
Publisher:
ISBN:
Category :
Languages : en
Pages : 322

Get Book Here

Book Description


Selective Catalytic Reduction of NOx

Selective Catalytic Reduction of NOx PDF Author: Oliver Kröcher
Publisher: MDPI
ISBN: 3038973645
Category : Science
Languages : en
Pages : 281

Get Book Here

Book Description
This book is a printed edition of the Special Issue "Selective Catalytic Reduction of NOx" that was published in Catalysts

Emissions Reduction

Emissions Reduction PDF Author: A. Tomita
Publisher: Elsevier
ISBN: 9780080440897
Category : Nature
Languages : en
Pages : 340

Get Book Here

Book Description
Over the past decade the topic of emissions reduction and control has remained an important area of research due to the enforcement of various Government policies in an attempt to minimize the impact on the environment. One area in which a great deal of research has been conducted to address this policy is NOx/SOx suppression. However, despite the progress that has been made over this time period, further research into the most effective method of reducing NOx/SOx emissions is still urgently required. In developed countries, a more stringent requirement in the level of emissions (such as is NOx/SOx component of less than 10ppm) will be enforced in the near future. Developing countries will also need a new technology that is effective and that is suited to each countries needs. Additional research and development efforts are thus necessary to meet such requirements. This compendium contains a collection of key papers themed around NOx/SOx emissions from combustion of hydrocarbon resources and the attempts to secure an efficient and effective method for reducing these emissions. These key papers are taken from the journals Fuel, Fuel Processing Technology and Progress in Energy and Combustion Science.

Selective Catalytic Reduction of NOx

Selective Catalytic Reduction of NOx PDF Author: Oliver Kröcher
Publisher:
ISBN: 9783038973652
Category :
Languages : en
Pages :

Get Book Here

Book Description
The most efficient process to reduce NOx emissions from lean exhaust gases, selective catalytic reduction (SCR) with ammonia, has undergone tremendous development over the past decades. Originally only applied in stationary power plants and industrial installations, SCR systems are now installed in millions of mobile diesel engines, ranging from off-road machineries, to heavy-duty and light-duty trucks and passenger cars, to locomotives and ships. All of these applications involve specific challenges due to tighter emission limits, new internal combustion engine technologies, or alternative fuels. Three review articles and 14 research articles in this book describe recent results and research trends of various aspects of the SCR process. Reaction engineering aspects, such as the proper dosage of ammonia or urea, respectively, are as important as further developments of the different SCR catalysts, by deepening the understanding of their functionality or by systematic improvements of their properties, such as low-temperature activity, selectivity, or poisoning-resistance. Another covered aspect is cost reduction through the use of cheaper base materials for the production is active and stable SCR catalysts. Finally, research efforts are reported to develop SCR processes with different reducing agents, which would open doors to new applications in the future. The range of topics addressed in this book will stimulate the reader's interest as well as provide a valuable source of information for researchers in academia and industry.

Lean NOx Trap Catalysis for Lean Burn Natural Gas Engines

Lean NOx Trap Catalysis for Lean Burn Natural Gas Engines PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
As the nation's demand for energy grows along with concern for the environment, there is a pressing need for cleaner, more efficient forms of energy. The internal combustion engine is well established as one of the most reliable forms of power production. They are commercially available in power ranges from 0.5 kW to 6.5 MW, which make them suitable for a wide range of distributed power applications from small scale residential to large scale industrial. In addition, alternative fuels with domestic abundance, such as natural gas, can play a key role in weaning our nations dependence on foreign oil. Lean burn natural gas engines can achieve high efficiencies and can be conveniently placed anywhere natural gas supplies are available. However, the aftertreatment of Nox emissions presents a challenge in lean exhaust conditions. Unlike carbon monoxide and hydrocarbons, which can be catalytically reduced in lean exhaust, NOx emissions require a net reducing atmosphere for catalytic reduction. Unless this challenge of NOx reduction can be met, emissions regulations may restrict the implementation of highly efficient lean burn natural gas engines for stationary power applications. While the typical three-way catalyst is ineffective for NOx reduction under lean exhaust conditions, several emerging catalyst technologies have demonstrated potential. The three leading contenders for lean burn engine de-NOx are the Lean NOx Catalyst (LNC), Selective Catalytic Reduction (SCR) and the Lean Nox Trap (LNT). Similar to the principles of SCR, an LNT catalyst has the ability to store NOx under lean engine operation. Then, an intermittent rich condition is created causing the stored NOx to be released and subsequently reduced. However, unlike SCR, which uses urea injection to create the reducing atmosphere, the LNT can use the same fuel supplied to the engine as the reductant. LNT technology has demonstrated high reduction efficiencies in diesel applications where diesel fuel is the reducing agent. The premise of this research is to explore the application of Lean NOx Trap technology to a lean burn natural gas engine where natural gas is the reducing agent. Natural gas is primarily composed of methane, a highly stable hydrocarbon. The two primary challenges addressed by this research are the performance of the LNT in the temperature ranges experienced from lean natural gas combustion and the utilization of the highly stable methane as the reducing agent. The project used an 8.3 liter lean burn natural gas engine on a dynamometer to generate the lean exhaust conditions. The catalysts were packaged in a dual path aftertreatment system, and a set of valves were used to control the flow of exhaust to either leg during adsorption and regeneration.

Selective Catalytic Reduction Technology for the Control of Nitrogen Oxide Emissions from Coal-Fired Boilers

Selective Catalytic Reduction Technology for the Control of Nitrogen Oxide Emissions from Coal-Fired Boilers PDF Author: Gene Knight
Publisher: DIANE Publishing
ISBN: 1437904726
Category : Technology & Engineering
Languages : en
Pages : 28

Get Book Here

Book Description
The Clean Coal Technology Demo. Program (CCTDP) is an effort to demonstrate a new generation of innovative coal utilization processes in a series of facilities built across the country. These projects are carried out on a commercial scale to prove technical feasibility and provide the info. required for future applications. Projects have demonstrated technical options with the potential to meet the needs of energy markets while satisfying environ. requirements. Part of this program is the demo. of technologies designed to reduce emissions of oxides of nitrogen (NOx) from existing coal-fired utility boilers. This report summarizes the status of selective catalytic reduction (SCR) technology for the control of NOx emissions from high-sulfur, coal-fired boilers. Illus.

Cerium-ferrierite Catalyst Systems for Reduction of NOx in Lean Burn Engine Exhaust Gas

Cerium-ferrierite Catalyst Systems for Reduction of NOx in Lean Burn Engine Exhaust Gas PDF Author: Germaine Seijger
Publisher: IOS Press
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 248

Get Book Here

Book Description
Contents of this Doctoral Dissertation include: NOx emission reduction from lean burn engines, automotive exhaust gas emissions, Reactions of NOx in the atmosphere Engine market share and sales trends, Ferrierite characteristics, synthesis and application, Characteristics of the group of FER framework structures, Screening of silver and cerium exchanged zeolite catalysts for the lean burn reduction of NOx with propene, Hydrocarbon NOx reduction in lean burn exhaust gas over Ce-FER catalysts, Approach to the kinetics of NOx reduction with propene over Ce-H-Ferrierite, In SITU preparation of ferrierite coatings on cordierite honeycomb supports, Concluding remarks

Passive Ammonia-SCR Catalyst System for NOx Abatement from Lean-burn Gasoline Engines

Passive Ammonia-SCR Catalyst System for NOx Abatement from Lean-burn Gasoline Engines PDF Author: Vitaly Y. Prikhodko
Publisher:
ISBN:
Category : Ammonia
Languages : en
Pages : 135

Get Book Here

Book Description
This dissertation summarizes experimental and computational observations from investigations of a selective catalytic reduction (SCR) system for reducing nitrogen oxides (NOx) in lean gasoline engine exhaust based on utilizing ammonia (NH3) generated by a three-way catalyst (TWC) during brief periods of fuel-rich engine operation. NH3 released from the TWC is stored and available to reduce NOx on a downstream SCR catalyst during subsequent periods of lean engine operation. The experimental results include high-speed measurements of transient NH3 formation on the TWC monolith catalysts, as the catalysts were exposed to lean gasoline engine exhaust from a commercial engine. In addition to the experimental investigations, dynamic computational simulations of NH3 generation on the TWC catalyst were implemented to provide more detailed information about NH3 generation on TWCs based on available reaction kinetic mechanisms. Based on the experimental and computational results, estimates of the potential fuel efficiency gains and emissions relevant to simulated drive cycles indicate that passive SCR can potentially achieve significant fuel efficiency benefits while still meeting regulated NOx emissions limits for vehicles powered by lean gasoline engines. However, optimal performance of the system will most likely require development of emission control methods that include accurate models for SCR catalyst NH3 storage and reaction under realistic drive-cycle transients.

Ultra Low NOx Catalytic Combustion for IGCC Power Plants

Ultra Low NOx Catalytic Combustion for IGCC Power Plants PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
In order to meet DOE's goals of developing low-emissions coal-based power systems, PCI has further developed and adapted it's Rich-Catalytic Lean-burn (RCL{reg_sign}) catalytic reactor to a combustion system operating on syngas as a fuel. The technology offers ultra-low emissions without the cost of exhaust after-treatment, with high efficiency (avoidance of after-treatment losses and reduced diluent requirements), and with catalytically stabilized combustion which extends the lower Btu limit for syngas operation. Tests were performed in PCI's sub-scale high-pressure (10 atm) test rig, using a two-stage (catalytic then gas-phase) combustion process for syngas fuel. In this process, the first stage consists of a fuel-rich mixture reacting on a catalyst with final and excess combustion air used to cool the catalyst. The second stage is a gas-phase combustor, where the air used for cooling the catalyst mixes with the catalytic reactor effluent to provide for final gas-phase burnout and dilution to fuel-lean combustion products. During testing, operating with a simulated Tampa Electric's Polk Power Station syngas, the NOx emissions program goal of less than 0.03 lbs/MMBtu (6 ppm at 15% O2) was met. NOx emissions were generally near 0.01 lbs/MMBtu (2 ppm at 15% O2) (PCI's target) over a range on engine firing temperatures. In addition, low emissions were shown for alternative fuels including high hydrogen content refinery fuel gas and low BTU content Blast Furnace Gas (BFG). For the refinery fuel gas increased resistance to combustor flashback was achieved through preferential consumption of hydrogen in the catalytic bed. In the case of BFG, stable combustion for fuels as low as 88 BTU/ft3 was established and maintained without the need for using co-firing. This was achieved based on the upstream catalytic reaction delivering a hotter (and thus more reactive) product to the flame zone. The PCI catalytic reactor was also shown to be active in ammonia reduction in fuel allowing potential reductions in the burner NOx production. These reductions of NOx emissions and expanded alternative fuel capability make the rich catalytic combustor uniquely situated to provide reductions in capital costs through elimination of requirements for SCR, operating costs through reduction in need for NOx abating dilution, SCR operating costs, and need for co-firing fuels allowing use of lower value but more available fuels, and efficiency of an engine through reduction in dilution flows.

Multi-Stage Selective Catalytic Reduction of NOx in Lean-Burn Engine Exhaust

Multi-Stage Selective Catalytic Reduction of NOx in Lean-Burn Engine Exhaust PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Recent Studies suggest that the conversion of NO to NO2 is an important intermediate step in the selective catalytic reduction (SCR) of NOx to N2. These studies have prompted the development of schemes that use an oxidation catalyst to convert NO to NO2, followed by a reduction catalyst to convert NO2 to N2. Multi-stage SCR offers high NOx reduction efficiency from catalysts that, separately, are not very active for reduction of NO, and alleviates the problem of selectivity between NO reduction and hydrocarbon oxidation. A plasma can also be used to oxidize NO to NO2. This paper compares the multi-stage catalytic scheme with the plasma-assisted catalytic scheme for reduction of NOx in lean-burn engine exhausts. The advantages of plasma oxidation over catalytic oxidation are presented.