Author: Kurt H. Becker
Publisher: World Scientific
ISBN: 9789810234690
Category : Science
Languages : en
Pages : 364
Book Description
Covers theoretical and experimental activities in the field of electron molecule collisions, with chapters on areas including positive and negative ion formation in electron collisions with fullerenes, spin effects in electron molecule collisions, collisions with oriented and aligned molecules, and electron impact dissociative excitation and ionization of molecular ions. Other subjects include electron-molecule cross sections for plasma application, and improvements to the complex Kohn variational method. No index. Annotation copyrighted by Book News, Inc., Portland, OR
Novel Aspects of Electron-molecule Collisions
Author: Kurt H. Becker
Publisher: World Scientific
ISBN: 9789810234690
Category : Science
Languages : en
Pages : 364
Book Description
Covers theoretical and experimental activities in the field of electron molecule collisions, with chapters on areas including positive and negative ion formation in electron collisions with fullerenes, spin effects in electron molecule collisions, collisions with oriented and aligned molecules, and electron impact dissociative excitation and ionization of molecular ions. Other subjects include electron-molecule cross sections for plasma application, and improvements to the complex Kohn variational method. No index. Annotation copyrighted by Book News, Inc., Portland, OR
Publisher: World Scientific
ISBN: 9789810234690
Category : Science
Languages : en
Pages : 364
Book Description
Covers theoretical and experimental activities in the field of electron molecule collisions, with chapters on areas including positive and negative ion formation in electron collisions with fullerenes, spin effects in electron molecule collisions, collisions with oriented and aligned molecules, and electron impact dissociative excitation and ionization of molecular ions. Other subjects include electron-molecule cross sections for plasma application, and improvements to the complex Kohn variational method. No index. Annotation copyrighted by Book News, Inc., Portland, OR
Computational Methods for Electron—Molecule Collisions
Author: Franco A. Gianturco
Publisher: Springer Science & Business Media
ISBN: 1475797974
Category : Science
Languages : en
Pages : 374
Book Description
The collision of electrons with molecules and molecular ions is a fundamental pro cess in atomic and molecular physics and in chemistry. At high incident electron en ergies, electron-molecule collisions are used to deduce molecular geometries, oscillator strengths for optically allowed transitions, and in the case of electron-impact ionization, to probe the momentum distribution of the molecule itself. When the incident electron energy is comparable to or below those of the molecular valence electrons, the physics involved is particularly rich. Correlation and exchange effects necessary to describe such collision processes bear a close resemblance to similar efft:cts in the theory of electronic structure in molecules. Compound state formations, in the form of resonances and vir tual states, manifest themselves in experimental observables which provide details of the electron-molecule interactions. Ro-vibrational excitations by low-energy electron collisions exemplify energy transfer between the electronic and nuclear motion. The role of nonadiabatic interaction is raised here. When the final vibrational state is in the continuum, molecular dissociation occurs. Dissociative recombination and dissociative attachment are examples of such fragmentation processes. In addition to its fundamental nature, the study of electron-molecule collisions is also motivated by its relation to other fields of study and by its technological appli cations. The study of planetary atmospheres and the interstellar medium necessarily involve collision processes of electrons with molecules and molecular ions.
Publisher: Springer Science & Business Media
ISBN: 1475797974
Category : Science
Languages : en
Pages : 374
Book Description
The collision of electrons with molecules and molecular ions is a fundamental pro cess in atomic and molecular physics and in chemistry. At high incident electron en ergies, electron-molecule collisions are used to deduce molecular geometries, oscillator strengths for optically allowed transitions, and in the case of electron-impact ionization, to probe the momentum distribution of the molecule itself. When the incident electron energy is comparable to or below those of the molecular valence electrons, the physics involved is particularly rich. Correlation and exchange effects necessary to describe such collision processes bear a close resemblance to similar efft:cts in the theory of electronic structure in molecules. Compound state formations, in the form of resonances and vir tual states, manifest themselves in experimental observables which provide details of the electron-molecule interactions. Ro-vibrational excitations by low-energy electron collisions exemplify energy transfer between the electronic and nuclear motion. The role of nonadiabatic interaction is raised here. When the final vibrational state is in the continuum, molecular dissociation occurs. Dissociative recombination and dissociative attachment are examples of such fragmentation processes. In addition to its fundamental nature, the study of electron-molecule collisions is also motivated by its relation to other fields of study and by its technological appli cations. The study of planetary atmospheres and the interstellar medium necessarily involve collision processes of electrons with molecules and molecular ions.
Electron-Molecule Collisions
Author: Isao Shimamura
Publisher: Springer Science & Business Media
ISBN: 1461323576
Category : Science
Languages : en
Pages : 578
Book Description
Scattering phenomena play an important role in modern physics. Many significant discoveries have been made through collision experiments. Amongst diverse kinds of collision systems, this book sheds light on the collision of an electron with a molecule. The electron-molecule collision provides a basic scattering problem. It is scattering by a nonspherical, multicentered composite particle with its centers having degrees of freedom of motion. The molecule can even disintegrate, Le., dissociate or ionize into fragments, some or all of which may also be molecules. Although it is a difficult problem, the recent theoretical, experimental, and computational progress has been so significant as to warrant publication of a book that specializes in this field. The progress owes partly to technical develop ments in measurements and computations. No less important has been the great and continuing stimulus from such fields of application as astrophysics, the physics of the earth's upper atmosphere, laser physics, radiation physics, the physics of gas discharges, magnetohydrodynamic power generation, and so on. This book aims at introducing the reader to the problem of electron molecule collisions, elucidating the physics behind the phenomena, and review ing, to some extent, up-to-date important results. This book should be appropri ate for graduate reading in physics and chemistry. We also believe that investi gators in atomic and molecular physics will benefit much from this book.
Publisher: Springer Science & Business Media
ISBN: 1461323576
Category : Science
Languages : en
Pages : 578
Book Description
Scattering phenomena play an important role in modern physics. Many significant discoveries have been made through collision experiments. Amongst diverse kinds of collision systems, this book sheds light on the collision of an electron with a molecule. The electron-molecule collision provides a basic scattering problem. It is scattering by a nonspherical, multicentered composite particle with its centers having degrees of freedom of motion. The molecule can even disintegrate, Le., dissociate or ionize into fragments, some or all of which may also be molecules. Although it is a difficult problem, the recent theoretical, experimental, and computational progress has been so significant as to warrant publication of a book that specializes in this field. The progress owes partly to technical develop ments in measurements and computations. No less important has been the great and continuing stimulus from such fields of application as astrophysics, the physics of the earth's upper atmosphere, laser physics, radiation physics, the physics of gas discharges, magnetohydrodynamic power generation, and so on. This book aims at introducing the reader to the problem of electron molecule collisions, elucidating the physics behind the phenomena, and review ing, to some extent, up-to-date important results. This book should be appropri ate for graduate reading in physics and chemistry. We also believe that investi gators in atomic and molecular physics will benefit much from this book.
Introduction to the Theory of Collisions of Electrons with Atoms and Molecules
Author: S.P. Khare
Publisher: Springer Science & Business Media
ISBN: 1461506115
Category : Science
Languages : en
Pages : 362
Book Description
An understanding of the collisions between micro particles is of great importance for the number of fields belonging to physics, chemistry, astrophysics, biophysics etc. The present book, a theory for electron-atom and molecule collisions is developed using non-relativistic quantum mechanics in a systematic and lucid manner. The scattering theory is an essential part of the quantum mechanics course of all universities. During the last 30 years, the author has lectured on the topics presented in this book (collisions physics, photon-atom collisions, electron-atom and electron-molecule collisions, "electron-photon delayed coincidence technique", etc.) at many institutions including Wayne State University, Detroit, MI, The University of Western Ontario, Canada, and The Meerut University, India. The present book is the outcome of those lectures and is written to serve as a textbook for post-graduate and pre-PhD students and as a reference book for researchers.
Publisher: Springer Science & Business Media
ISBN: 1461506115
Category : Science
Languages : en
Pages : 362
Book Description
An understanding of the collisions between micro particles is of great importance for the number of fields belonging to physics, chemistry, astrophysics, biophysics etc. The present book, a theory for electron-atom and molecule collisions is developed using non-relativistic quantum mechanics in a systematic and lucid manner. The scattering theory is an essential part of the quantum mechanics course of all universities. During the last 30 years, the author has lectured on the topics presented in this book (collisions physics, photon-atom collisions, electron-atom and electron-molecule collisions, "electron-photon delayed coincidence technique", etc.) at many institutions including Wayne State University, Detroit, MI, The University of Western Ontario, Canada, and The Meerut University, India. The present book is the outcome of those lectures and is written to serve as a textbook for post-graduate and pre-PhD students and as a reference book for researchers.
Collisions of Electrons with Atoms and Molecules
Author: G.F. Drukarev
Publisher: Springer Science & Business Media
ISBN: 1461317797
Category : Science
Languages : en
Pages : 252
Book Description
This book is a short outline of the present state of the theory of electron collisions with atomic particles - atoms, molecules and ions. It is addressed to those who by nature of their work need detailed information about the cross sections of various processes of electron collisions with atomic particles: experimentalists working in plasma physics, optics, quantum electronics, atmospheric and space physics, 'etc. Some of the cross sections have been measured. But in many important cases the only source of information is theoretical calcu lation. The numerous theoretical papers dealing with electronic collision processes contain various approximations. The inter relation between them and the level of their accuracy is often diffi cult to understand without a systematic study of the theory of atomic collisions, not to mention that theoretical considerations are necessary for the consistent interpretation of experimental results. The main constituents of the book are: 1. General theory with special emphasis on the topics most impor tant for understanding and discussing electron collisions with atomic particles.
Publisher: Springer Science & Business Media
ISBN: 1461317797
Category : Science
Languages : en
Pages : 252
Book Description
This book is a short outline of the present state of the theory of electron collisions with atomic particles - atoms, molecules and ions. It is addressed to those who by nature of their work need detailed information about the cross sections of various processes of electron collisions with atomic particles: experimentalists working in plasma physics, optics, quantum electronics, atmospheric and space physics, 'etc. Some of the cross sections have been measured. But in many important cases the only source of information is theoretical calcu lation. The numerous theoretical papers dealing with electronic collision processes contain various approximations. The inter relation between them and the level of their accuracy is often diffi cult to understand without a systematic study of the theory of atomic collisions, not to mention that theoretical considerations are necessary for the consistent interpretation of experimental results. The main constituents of the book are: 1. General theory with special emphasis on the topics most impor tant for understanding and discussing electron collisions with atomic particles.
Electron Scattering
Author: Colm T. Whelan
Publisher: Springer Science & Business Media
ISBN: 0387275673
Category : Science
Languages : en
Pages : 342
Book Description
There is a unity to physics; it is a discipline which provides the most fundamental understanding of the dynamics of matter and energy. To understand anything about a physical system you have to interact with it and one of the best ways to learn something is to use electrons as probes. This book is the result of a meeting, which took place in Magdalene College Cambridge in December 2001. Atomic, nuclear, cluster, soHd state, chemical and even bio- physicists got together to consider scattering electrons to explore matter in all its forms. Theory and experiment were represented in about equal measure. It was meeting marked by the most lively of discussions and the free exchange of ideas. We all learnt a lot. The Editors are grateful to EPSRC through its Collaborative Computational Project program (CCP2), lOPP, the Division of Atomic, Molecular, Optical and Plasma Physics (DAMOPP) and the Atomic Molecular Interactions group (AMIG) of the Institute of Physics for financial support. The smooth running of the meeting was enormously facilitated by the efficiency and helpfulness of the staff of Magdalene College, for which we are extremely grateful. This meeting marked the end for one of us (CTW) of a ten-year period as a fellow of the College and he would like to take this opportunity to thank the fellows and staff for the privilege of working with them.
Publisher: Springer Science & Business Media
ISBN: 0387275673
Category : Science
Languages : en
Pages : 342
Book Description
There is a unity to physics; it is a discipline which provides the most fundamental understanding of the dynamics of matter and energy. To understand anything about a physical system you have to interact with it and one of the best ways to learn something is to use electrons as probes. This book is the result of a meeting, which took place in Magdalene College Cambridge in December 2001. Atomic, nuclear, cluster, soHd state, chemical and even bio- physicists got together to consider scattering electrons to explore matter in all its forms. Theory and experiment were represented in about equal measure. It was meeting marked by the most lively of discussions and the free exchange of ideas. We all learnt a lot. The Editors are grateful to EPSRC through its Collaborative Computational Project program (CCP2), lOPP, the Division of Atomic, Molecular, Optical and Plasma Physics (DAMOPP) and the Atomic Molecular Interactions group (AMIG) of the Institute of Physics for financial support. The smooth running of the meeting was enormously facilitated by the efficiency and helpfulness of the staff of Magdalene College, for which we are extremely grateful. This meeting marked the end for one of us (CTW) of a ten-year period as a fellow of the College and he would like to take this opportunity to thank the fellows and staff for the privilege of working with them.
Novel Aspects Of Electron-molecule Collisions
Author: Kurt H Becker
Publisher: World Scientific
ISBN: 9814496170
Category :
Languages : en
Pages : 356
Book Description
Electron-molecule collisions have been studied extensively by both experimentalists and theorists since the early years of this century. The past ten years have seen a remarkable renaissance in experimental and theoretical activities in the study of electron collision processes with molecules. This was stimulated (i) by the advent of more powerful computers and new theoretical concepts that allow the study of complex targets and collision processes with a multitude of final states (such as ionization and dissociation) and the investigation of collisions with oriented and aligned molecules, (ii) by advances in experimental instrumentation (improved electron spectrometers, intense sources of spin-polarized electrons, position-sensitive detectors), and (iii) by the discovery of a new class of species, e.g. large stable carbon clusters or “fullerenes”, which opened up a new field of theoretical and experimental research in which collisions involving fullerenes as targets or as projectiles constitute an important component. Lastly, electron-molecule collisions are a key component in efforts to characterize, diagnose, describe and model the complex processes in low-temperature plasmas, which are of ever-increasing importance in many rapidly developing high-tech applications (such as the fabrication of microelectronic chips), in the controlled deposition of thin films and in plasma-assisted surface-modification processes. This book covers the activities in all those areas.
Publisher: World Scientific
ISBN: 9814496170
Category :
Languages : en
Pages : 356
Book Description
Electron-molecule collisions have been studied extensively by both experimentalists and theorists since the early years of this century. The past ten years have seen a remarkable renaissance in experimental and theoretical activities in the study of electron collision processes with molecules. This was stimulated (i) by the advent of more powerful computers and new theoretical concepts that allow the study of complex targets and collision processes with a multitude of final states (such as ionization and dissociation) and the investigation of collisions with oriented and aligned molecules, (ii) by advances in experimental instrumentation (improved electron spectrometers, intense sources of spin-polarized electrons, position-sensitive detectors), and (iii) by the discovery of a new class of species, e.g. large stable carbon clusters or “fullerenes”, which opened up a new field of theoretical and experimental research in which collisions involving fullerenes as targets or as projectiles constitute an important component. Lastly, electron-molecule collisions are a key component in efforts to characterize, diagnose, describe and model the complex processes in low-temperature plasmas, which are of ever-increasing importance in many rapidly developing high-tech applications (such as the fabrication of microelectronic chips), in the controlled deposition of thin films and in plasma-assisted surface-modification processes. This book covers the activities in all those areas.
Low-Energy Electron Scattering from Molecules, Biomolecules and Surfaces
Author: Petr Carsky
Publisher: CRC Press
ISBN: 1439839115
Category : Science
Languages : en
Pages : 311
Book Description
Since the turn of the 21st century, the field of electron molecule collisions has undergone a renaissance. The importance of such collisions in applications from radiation chemistry to astrochemistry has flowered, and their role in industrial processes such as plasma technology and lighting are vital to the advancement of next generation devices. F
Publisher: CRC Press
ISBN: 1439839115
Category : Science
Languages : en
Pages : 311
Book Description
Since the turn of the 21st century, the field of electron molecule collisions has undergone a renaissance. The importance of such collisions in applications from radiation chemistry to astrochemistry has flowered, and their role in industrial processes such as plasma technology and lighting are vital to the advancement of next generation devices. F
Atom - Molecule Collision Theory
Author: Richard Barry Bernstein
Publisher: Springer Science & Business Media
ISBN: 1461329132
Category : Science
Languages : en
Pages : 785
Book Description
The broad field of molecular collisions is one of considerable current interest, one in which there is a great deal of research activity, both experi mental and theoretical. This is probably because elastic, inelastic, and reactive intermolecular collisions are of central importance in many of the fundamental processes of chemistry and physics. One small area of this field, namely atom-molecule collisions, is now beginning to be "understood" from first principles. Although the more general subject of the collisions of polyatomic molecules is of great im portance and intrinsic interest, it is still too complex from the viewpoint of theoretical understanding. However, for atoms and simple molecules the essential theory is well developed, and computational methods are sufficiently advanced that calculations can now be favorably compared with experimental results. This "coming together" of the subject (and, incidentally, of physicists and chemists !), though still in an early stage, signals that the time is ripe for an appraisal and review of the theoretical basis of atom-molecule collisions. It is especially important for the experimentalist in the field to have a working knowledge of the theory and computational methods required to describe the experimentally observable behavior of the system. By now many of the alternative theoretical approaches and computational procedures have been tested and intercompared. More-or-Iess optimal methods for dealing with each aspect are emerging. In many cases working equations, even schematic algorithms, have been developed, with assumptions and caveats delineated.
Publisher: Springer Science & Business Media
ISBN: 1461329132
Category : Science
Languages : en
Pages : 785
Book Description
The broad field of molecular collisions is one of considerable current interest, one in which there is a great deal of research activity, both experi mental and theoretical. This is probably because elastic, inelastic, and reactive intermolecular collisions are of central importance in many of the fundamental processes of chemistry and physics. One small area of this field, namely atom-molecule collisions, is now beginning to be "understood" from first principles. Although the more general subject of the collisions of polyatomic molecules is of great im portance and intrinsic interest, it is still too complex from the viewpoint of theoretical understanding. However, for atoms and simple molecules the essential theory is well developed, and computational methods are sufficiently advanced that calculations can now be favorably compared with experimental results. This "coming together" of the subject (and, incidentally, of physicists and chemists !), though still in an early stage, signals that the time is ripe for an appraisal and review of the theoretical basis of atom-molecule collisions. It is especially important for the experimentalist in the field to have a working knowledge of the theory and computational methods required to describe the experimentally observable behavior of the system. By now many of the alternative theoretical approaches and computational procedures have been tested and intercompared. More-or-Iess optimal methods for dealing with each aspect are emerging. In many cases working equations, even schematic algorithms, have been developed, with assumptions and caveats delineated.
Molecular Processes in Plasmas
Author: Yukikazu Itikawa
Publisher: Springer Science & Business Media
ISBN: 3540725806
Category : Science
Languages : en
Pages : 199
Book Description
A variety of plasmas include molecules rather than only ions or atoms. Examples are ionospheres of the Earth and other planets, stellar atmospheres, gaseous discharges for use in various devices and processes, and fusion plasmas in the edge region. This book describes the role of molecules in those plasmas by showing elementary collision processes involving those molecules.
Publisher: Springer Science & Business Media
ISBN: 3540725806
Category : Science
Languages : en
Pages : 199
Book Description
A variety of plasmas include molecules rather than only ions or atoms. Examples are ionospheres of the Earth and other planets, stellar atmospheres, gaseous discharges for use in various devices and processes, and fusion plasmas in the edge region. This book describes the role of molecules in those plasmas by showing elementary collision processes involving those molecules.