Journal of Statistical Planning and Inference

Journal of Statistical Planning and Inference PDF Author:
Publisher:
ISBN:
Category : Mathematical statistics
Languages : en
Pages : 842

Get Book Here

Book Description

Journal of Statistical Planning and Inference

Journal of Statistical Planning and Inference PDF Author:
Publisher:
ISBN:
Category : Mathematical statistics
Languages : en
Pages : 842

Get Book Here

Book Description


Handbook of Item Response Theory

Handbook of Item Response Theory PDF Author: Wim J. van der Linden
Publisher: CRC Press
ISBN: 148228247X
Category : Mathematics
Languages : en
Pages : 1688

Get Book Here

Book Description
Drawing on the work of 75 internationally acclaimed experts in the field, Handbook of Item Response Theory, Three-Volume Set presents all major item response models, classical and modern statistical tools used in item response theory (IRT), and major areas of applications of IRT in educational and psychological testing, medical diagnosis of patient-reported outcomes, and marketing research. It also covers CRAN packages, WinBUGS, Bilog MG, Multilog, Parscale, IRTPRO, Mplus, GLLAMM, Latent Gold, and numerous other software tools. A full update of editor Wim J. van der Linden and Ronald K. Hambleton’s classic Handbook of Modern Item Response Theory, this handbook has been expanded from 28 chapters to 85 chapters in three volumes. The three volumes are thoroughly edited and cross-referenced, with uniform notation, format, and pedagogical principles across all chapters. Each chapter is self-contained and deals with the latest developments in IRT.

Analyzing Longitudinal Clinical Trial Data

Analyzing Longitudinal Clinical Trial Data PDF Author: Craig Mallinckrodt
Publisher: CRC Press
ISBN: 1351737686
Category : Mathematics
Languages : en
Pages : 291

Get Book Here

Book Description
Analyzing Longitudinal Clinical Trial Data: A Practical Guide provide practical and easy to implement approaches for bringing the latest theory on analysis of longitudinal clinical trial data into routine practice.?This book, with its example-oriented approach that includes numerous SAS and R code fragments, is an essential resource for statisticians and graduate students specializing in medical research. The authors provide clear descriptions of the relevant statistical theory and illustrate practical considerations for modeling longitudinal data. Topics covered include choice of endpoint and statistical test; modeling means and the correlations between repeated measurements; accounting for covariates; modeling categorical data; model verification; methods for incomplete (missing) data that includes the latest developments in sensitivity analyses, along with approaches for and issues in choosing estimands; and means for preventing missing data. Each chapter stands alone in its coverage of a topic. The concluding chapters provide detailed advice on how to integrate these independent topics into an over-arching study development process and statistical analysis plan.

Mathematical Reviews

Mathematical Reviews PDF Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 964

Get Book Here

Book Description


The Reviewer’s Guide to Quantitative Methods in the Social Sciences

The Reviewer’s Guide to Quantitative Methods in the Social Sciences PDF Author: Gregory R. Hancock
Publisher: Routledge
ISBN: 1135172994
Category : Education
Languages : en
Pages : 449

Get Book Here

Book Description
Designed for reviewers of research manuscripts and proposals in the social and behavioral sciences, and beyond, this title includes chapters that address traditional and emerging quantitative methods of data analysis.

Large Sample Techniques for Statistics

Large Sample Techniques for Statistics PDF Author: Jiming Jiang
Publisher: Springer Science & Business Media
ISBN: 144196827X
Category : Mathematics
Languages : en
Pages : 612

Get Book Here

Book Description
In a way, the world is made up of approximations, and surely there is no exception in the world of statistics. In fact, approximations, especially large sample approximations, are very important parts of both theoretical and - plied statistics.TheGaussiandistribution,alsoknownasthe normaldistri- tion,is merelyonesuchexample,dueto thewell-knowncentrallimittheorem. Large-sample techniques provide solutions to many practical problems; they simplify our solutions to di?cult, sometimes intractable problems; they j- tify our solutions; and they guide us to directions of improvements. On the other hand, just because large-sample approximations are used everywhere, and every day, it does not guarantee that they are used properly, and, when the techniques are misused, there may be serious consequences. 2 Example 1 (Asymptotic? distribution). Likelihood ratio test (LRT) is one of the fundamental techniques in statistics. It is well known that, in the 2 “standard” situation, the asymptotic null distribution of the LRT is?,with the degreesoffreedomequaltothe di?erencebetweenthedimensions,de?ned as the numbers of free parameters, of the two nested models being compared (e.g., Rice 1995, pp. 310). This might lead to a wrong impression that the 2 asymptotic (null) distribution of the LRT is always? . A similar mistake 2 might take place when dealing with Pearson’s? -test—the asymptotic distri- 2 2 bution of Pearson’s? -test is not always? (e.g., Moore 1978).

Linear Models and Generalizations

Linear Models and Generalizations PDF Author: C. Radhakrishna Rao
Publisher: Springer Science & Business Media
ISBN: 3540742271
Category : Mathematics
Languages : en
Pages : 583

Get Book Here

Book Description
Revised and updated with the latest results, this Third Edition explores the theory and applications of linear models. The authors present a unified theory of inference from linear models and its generalizations with minimal assumptions. They not only use least squares theory, but also alternative methods of estimation and testing based on convex loss functions and general estimating equations. Highlights of coverage include sensitivity analysis and model selection, an analysis of incomplete data, an analysis of categorical data based on a unified presentation of generalized linear models, and an extensive appendix on matrix theory.

Statistical Modeling With R

Statistical Modeling With R PDF Author: Pablo Inchausti
Publisher: Oxford University Press
ISBN: 0192675036
Category : Science
Languages : en
Pages : 519

Get Book Here

Book Description
To date, statistics has tended to be neatly divided into two theoretical approaches or frameworks: frequentist (or classical) and Bayesian. Scientists typically choose the statistical framework to analyse their data depending on the nature and complexity of the problem, and based on their personal views and prior training on probability and uncertainty. Although textbooks and courses should reflect and anticipate this dual reality, they rarely do so. This accessible textbook explains, discusses, and applies both the frequentist and Bayesian theoretical frameworks to fit the different types of statistical models that allow an analysis of the types of data most commonly gathered by life scientists. It presents the material in an informal, approachable, and progressive manner suitable for readers with only a basic knowledge of calculus and statistics. Statistical Modeling with R is aimed at senior undergraduate and graduate students, professional researchers, and practitioners throughout the life sciences, seeking to strengthen their understanding of quantitative methods and to apply them successfully to real world scenarios, whether in the fields of ecology, evolution, environmental studies, or computational biology.

Generalized Linear Models

Generalized Linear Models PDF Author: Dipak K. Dey
Publisher: CRC Press
ISBN: 9780824790349
Category : Mathematics
Languages : en
Pages : 450

Get Book Here

Book Description
This volume describes how to conceptualize, perform, and critique traditional generalized linear models (GLMs) from a Bayesian perspective and how to use modern computational methods to summarize inferences using simulation. Introducing dynamic modeling for GLMs and containing over 1000 references and equations, Generalized Linear Models considers parametric and semiparametric approaches to overdispersed GLMs, presents methods of analyzing correlated binary data using latent variables. It also proposes a semiparametric method to model link functions for binary response data, and identifies areas of important future research and new applications of GLMs.

Statistical Data Analysis Based on the L1-Norm and Related Methods

Statistical Data Analysis Based on the L1-Norm and Related Methods PDF Author: Yadolah Dodge
Publisher: Birkhäuser
ISBN: 3034882017
Category : Mathematics
Languages : en
Pages : 447

Get Book Here

Book Description
This volume contains a selection of invited papers, presented to the fourth International Conference on Statistical Data Analysis Based on the L1-Norm and Related Methods, held in Neuchâtel, Switzerland, from August 4–9, 2002. The contributions represent clear evidence to the importance of the development of theory, methods and applications related to the statistical data analysis based on the L1-norm.