Nonsmooth Equations in Optimization

Nonsmooth Equations in Optimization PDF Author: Diethard Klatte
Publisher: Springer Science & Business Media
ISBN: 0306476169
Category : Mathematics
Languages : en
Pages : 351

Get Book Here

Book Description
Many questions dealing with solvability, stability and solution methods for va- ational inequalities or equilibrium, optimization and complementarity problems lead to the analysis of certain (perturbed) equations. This often requires a - formulation of the initial model being under consideration. Due to the specific of the original problem, the resulting equation is usually either not differ- tiable (even if the data of the original model are smooth), or it does not satisfy the assumptions of the classical implicit function theorem. This phenomenon is the main reason why a considerable analytical inst- ment dealing with generalized equations (i.e., with finding zeros of multivalued mappings) and nonsmooth equations (i.e., the defining functions are not c- tinuously differentiable) has been developed during the last 20 years, and that under very different viewpoints and assumptions. In this theory, the classical hypotheses of convex analysis, in particular, monotonicity and convexity, have been weakened or dropped, and the scope of possible applications seems to be quite large. Briefly, this discipline is often called nonsmooth analysis, sometimes also variational analysis. Our book fits into this discipline, however, our main intention is to develop the analytical theory in close connection with the needs of applications in optimization and related subjects. Main Topics of the Book 1. Extended analysis of Lipschitz functions and their generalized derivatives, including ”Newton maps” and regularity of multivalued mappings. 2. Principle of successive approximation under metric regularity and its - plication to implicit functions.

Nonsmooth Equations in Optimization

Nonsmooth Equations in Optimization PDF Author: Diethard Klatte
Publisher: Springer Science & Business Media
ISBN: 0306476169
Category : Mathematics
Languages : en
Pages : 351

Get Book Here

Book Description
Many questions dealing with solvability, stability and solution methods for va- ational inequalities or equilibrium, optimization and complementarity problems lead to the analysis of certain (perturbed) equations. This often requires a - formulation of the initial model being under consideration. Due to the specific of the original problem, the resulting equation is usually either not differ- tiable (even if the data of the original model are smooth), or it does not satisfy the assumptions of the classical implicit function theorem. This phenomenon is the main reason why a considerable analytical inst- ment dealing with generalized equations (i.e., with finding zeros of multivalued mappings) and nonsmooth equations (i.e., the defining functions are not c- tinuously differentiable) has been developed during the last 20 years, and that under very different viewpoints and assumptions. In this theory, the classical hypotheses of convex analysis, in particular, monotonicity and convexity, have been weakened or dropped, and the scope of possible applications seems to be quite large. Briefly, this discipline is often called nonsmooth analysis, sometimes also variational analysis. Our book fits into this discipline, however, our main intention is to develop the analytical theory in close connection with the needs of applications in optimization and related subjects. Main Topics of the Book 1. Extended analysis of Lipschitz functions and their generalized derivatives, including ”Newton maps” and regularity of multivalued mappings. 2. Principle of successive approximation under metric regularity and its - plication to implicit functions.

Nonsmooth Optimization: Analysis And Algorithms With Applications To Optimal Control

Nonsmooth Optimization: Analysis And Algorithms With Applications To Optimal Control PDF Author: Marko M Makela
Publisher: World Scientific
ISBN: 9814522414
Category : Mathematics
Languages : en
Pages : 268

Get Book Here

Book Description
This book is a self-contained elementary study for nonsmooth analysis and optimization, and their use in solution of nonsmooth optimal control problems. The first part of the book is concerned with nonsmooth differential calculus containing necessary tools for nonsmooth optimization. The second part is devoted to the methods of nonsmooth optimization and their development. A proximal bundle method for nonsmooth nonconvex optimization subject to nonsmooth constraints is constructed. In the last part nonsmooth optimization is applied to problems arising from optimal control of systems covered by partial differential equations. Several practical problems, like process control and optimal shape design problems are considered.

Nonsmooth Vector Functions and Continuous Optimization

Nonsmooth Vector Functions and Continuous Optimization PDF Author: V. Jeyakumar
Publisher: Springer Science & Business Media
ISBN: 0387737170
Category : Mathematics
Languages : en
Pages : 277

Get Book Here

Book Description
Focusing on the study of nonsmooth vector functions, this book presents a comprehensive account of the calculus of generalized Jacobian matrices and their applications to continuous nonsmooth optimization problems, as well as variational inequalities in finite dimensions. The treatment is motivated by a desire to expose an elementary approach to nonsmooth calculus, using a set of matrices to replace the nonexistent Jacobian matrix of a continuous vector function.

Nonsmooth Approach to Optimization Problems with Equilibrium Constraints

Nonsmooth Approach to Optimization Problems with Equilibrium Constraints PDF Author: Jiri Outrata
Publisher: Springer Science & Business Media
ISBN: 1475728255
Category : Mathematics
Languages : en
Pages : 281

Get Book Here

Book Description
In the early fifties, applied mathematicians, engineers and economists started to pay c10se attention to the optimization problems in which another (lower-Ievel) optimization problem arises as a side constraint. One of the motivating factors was the concept of the Stackelberg solution in game theory, together with its economic applications. Other problems have been encountered in the seventies in natural sciences and engineering. Many of them are of practical importance and have been extensively studied, mainly from the theoretical point of view. Later, applications to mechanics and network design have lead to an extension of the problem formulation: Constraints in form of variation al inequalities and complementarity problems were also admitted. The term "generalized bi level programming problems" was used at first but later, probably in Harker and Pang, 1988, a different terminology was introduced: Mathematical programs with equilibrium constraints, or simply, MPECs. In this book we adhere to MPEC terminology. A large number of papers deals with MPECs but, to our knowledge, there is only one monograph (Luo et al. , 1997). This monograph concentrates on optimality conditions and numerical methods. Our book is oriented similarly, but we focus on those MPECs which can be treated by the implicit programming approach: the equilibrium constraint locally defines a certain implicit function and allows to convert the problem into a mathematical program with a nonsmooth objective.

Introduction to Functional Analysis

Introduction to Functional Analysis PDF Author: Christian Clason
Publisher: Springer Nature
ISBN: 3030527840
Category : Mathematics
Languages : en
Pages : 166

Get Book Here

Book Description
Functional analysis has become one of the essential foundations of modern applied mathematics in the last decades, from the theory and numerical solution of differential equations, from optimization and probability theory to medical imaging and mathematical image processing. This textbook offers a compact introduction to the theory and is designed to be used during one semester, fitting exactly 26 lectures of 90 minutes each. It ranges from the topological fundamentals recalled from basic lectures on real analysis to spectral theory in Hilbert spaces. Special attention is given to the central results on dual spaces and weak convergence.

Nonsmooth Analysis and Control Theory

Nonsmooth Analysis and Control Theory PDF Author: Francis H. Clarke
Publisher: Springer Science & Business Media
ISBN: 0387226257
Category : Mathematics
Languages : en
Pages : 288

Get Book Here

Book Description
A clear and succinct presentation of the essentials of this subject, together with some of its applications and a generous helping of interesting exercises. Following an introductory chapter with a taste of what is to come, the next three chapters constitute a course in nonsmooth analysis and identify a coherent and comprehensive approach to the subject, leading to an efficient, natural, and powerful body of theory. The whole is rounded off with a self-contained introduction to the theory of control of ordinary differential equations. The authors have incorporated a number of new results which clarify the relationships between the different schools of thought in the subject, with the aim of making nonsmooth analysis accessible to a wider audience. End-of-chapter problems offer scope for deeper understanding.

Generalized Convexity, Nonsmooth Variational Inequalities, and Nonsmooth Optimization

Generalized Convexity, Nonsmooth Variational Inequalities, and Nonsmooth Optimization PDF Author: Qamrul Hasan Ansari
Publisher: CRC Press
ISBN: 1439868212
Category : Business & Economics
Languages : en
Pages : 294

Get Book Here

Book Description
Until now, no book addressed convexity, monotonicity, and variational inequalities together. Generalized Convexity, Nonsmooth Variational Inequalities, and Nonsmooth Optimization covers all three topics, including new variational inequality problems defined by a bifunction.The first part of the book focuses on generalized convexity and generalized

Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces

Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces PDF Author: Michael Ulbrich
Publisher: SIAM
ISBN: 1611970687
Category : Mathematics
Languages : en
Pages : 315

Get Book Here

Book Description
A comprehensive treatment of semismooth Newton methods in function spaces: from their foundations to recent progress in the field. This book is appropriate for researchers and practitioners in PDE-constrained optimization, nonlinear optimization and numerical analysis, as well as engineers interested in the current theory and methods for solving variational inequalities.

Elliptic Problems in Nonsmooth Domains

Elliptic Problems in Nonsmooth Domains PDF Author: Pierre Grisvard
Publisher: SIAM
ISBN: 1611972027
Category : Mathematics
Languages : en
Pages : 426

Get Book Here

Book Description
Originally published: Boston: Pitman Advanced Pub. Program, 1985.

Nonsmooth Optimization

Nonsmooth Optimization PDF Author: Claude Lemarechal
Publisher: Elsevier
ISBN: 1483188760
Category : Technology & Engineering
Languages : en
Pages : 195

Get Book Here

Book Description
Nonsmooth Optimization contains the proceedings of a workshop on non-smooth optimization (NSO) held from March 28 to April 8,1977 in Austria under the auspices of the International Institute for Applied Systems Analysis. The papers explore the techniques and theory of NSO and cover topics ranging from systems of inequalities to smooth approximation of non-smooth functions, as well as quadratic programming and line searches. Comprised of nine chapters, this volume begins with a survey of Soviet research on subgradient optimization carried out since 1962, followed by a discussion on rates of convergence in subgradient optimization. The reader is then introduced to the method of subgradient optimization in an abstract setting and the minimal hypotheses required to ensure convergence; NSO and nonlinear programming; and bundle methods in NSO. A feasible descent algorithm for linearly constrained least squares problems is described. The book also considers sufficient minimization of piecewise-linear univariate functions before concluding with a description of the method of parametric decomposition in mathematical programming. This monograph will be of interest to mathematicians and mathematics students.