All of Nonparametric Statistics

All of Nonparametric Statistics PDF Author: Larry Wasserman
Publisher: Springer Science & Business Media
ISBN: 0387306234
Category : Mathematics
Languages : en
Pages : 272

Get Book Here

Book Description
This text provides the reader with a single book where they can find accounts of a number of up-to-date issues in nonparametric inference. The book is aimed at Masters or PhD level students in statistics, computer science, and engineering. It is also suitable for researchers who want to get up to speed quickly on modern nonparametric methods. It covers a wide range of topics including the bootstrap, the nonparametric delta method, nonparametric regression, density estimation, orthogonal function methods, minimax estimation, nonparametric confidence sets, and wavelets. The book’s dual approach includes a mixture of methodology and theory.

All of Nonparametric Statistics

All of Nonparametric Statistics PDF Author: Larry Wasserman
Publisher: Springer Science & Business Media
ISBN: 0387306234
Category : Mathematics
Languages : en
Pages : 272

Get Book Here

Book Description
This text provides the reader with a single book where they can find accounts of a number of up-to-date issues in nonparametric inference. The book is aimed at Masters or PhD level students in statistics, computer science, and engineering. It is also suitable for researchers who want to get up to speed quickly on modern nonparametric methods. It covers a wide range of topics including the bootstrap, the nonparametric delta method, nonparametric regression, density estimation, orthogonal function methods, minimax estimation, nonparametric confidence sets, and wavelets. The book’s dual approach includes a mixture of methodology and theory.

Bayesian Nonparametrics

Bayesian Nonparametrics PDF Author: J.K. Ghosh
Publisher: Springer Science & Business Media
ISBN: 0387226540
Category : Mathematics
Languages : en
Pages : 311

Get Book Here

Book Description
This book is the first systematic treatment of Bayesian nonparametric methods and the theory behind them. It will also appeal to statisticians in general. The book is primarily aimed at graduate students and can be used as the text for a graduate course in Bayesian non-parametrics.

Bayesian Nonparametrics

Bayesian Nonparametrics PDF Author: Nils Lid Hjort
Publisher: Cambridge University Press
ISBN: 1139484605
Category : Mathematics
Languages : en
Pages : 309

Get Book Here

Book Description
Bayesian nonparametrics works - theoretically, computationally. The theory provides highly flexible models whose complexity grows appropriately with the amount of data. Computational issues, though challenging, are no longer intractable. All that is needed is an entry point: this intelligent book is the perfect guide to what can seem a forbidding landscape. Tutorial chapters by Ghosal, Lijoi and Prünster, Teh and Jordan, and Dunson advance from theory, to basic models and hierarchical modeling, to applications and implementation, particularly in computer science and biostatistics. These are complemented by companion chapters by the editors and Griffin and Quintana, providing additional models, examining computational issues, identifying future growth areas, and giving links to related topics. This coherent text gives ready access both to underlying principles and to state-of-the-art practice. Specific examples are drawn from information retrieval, NLP, machine vision, computational biology, biostatistics, and bioinformatics.

An Introduction to Nonparametric Statistics

An Introduction to Nonparametric Statistics PDF Author: John E. Kolassa
Publisher: CRC Press
ISBN: 0429511361
Category : Mathematics
Languages : en
Pages : 225

Get Book Here

Book Description
An Introduction to Nonparametric Statistics presents techniques for statistical analysis in the absence of strong assumptions about the distributions generating the data. Rank-based and resampling techniques are heavily represented, but robust techniques are considered as well. These techniques include one-sample testing and estimation, multi-sample testing and estimation, and regression. Attention is paid to the intellectual development of the field, with a thorough review of bibliographical references. Computational tools, in R and SAS, are developed and illustrated via examples. Exercises designed to reinforce examples are included. Features Rank-based techniques including sign, Kruskal-Wallis, Friedman, Mann-Whitney and Wilcoxon tests are presented Tests are inverted to produce estimates and confidence intervals Multivariate tests are explored Techniques reflecting the dependence of a response variable on explanatory variables are presented Density estimation is explored The bootstrap and jackknife are discussed This text is intended for a graduate student in applied statistics. The course is best taken after an introductory course in statistical methodology, elementary probability, and regression. Mathematical prerequisites include calculus through multivariate differentiation and integration, and, ideally, a course in matrix algebra.

Nonparametric Statistical Methods

Nonparametric Statistical Methods PDF Author: Myles Hollander
Publisher: John Wiley & Sons
ISBN: 1118553292
Category : Mathematics
Languages : en
Pages : 872

Get Book Here

Book Description
Praise for the Second Edition “This book should be an essential part of the personal library of every practicing statistician.”—Technometrics Thoroughly revised and updated, the new edition of Nonparametric Statistical Methods includes additional modern topics and procedures, more practical data sets, and new problems from real-life situations. The book continues to emphasize the importance of nonparametric methods as a significant branch of modern statistics and equips readers with the conceptual and technical skills necessary to select and apply the appropriate procedures for any given situation. Written by leading statisticians, Nonparametric Statistical Methods, Third Edition provides readers with crucial nonparametric techniques in a variety of settings, emphasizing the assumptions underlying the methods. The book provides an extensive array of examples that clearly illustrate how to use nonparametric approaches for handling one- or two-sample location and dispersion problems, dichotomous data, and one-way and two-way layout problems. In addition, the Third Edition features: The use of the freely available R software to aid in computation and simulation, including many new R programs written explicitly for this new edition New chapters that address density estimation, wavelets, smoothing, ranked set sampling, and Bayesian nonparametrics Problems that illustrate examples from agricultural science, astronomy, biology, criminology, education, engineering, environmental science, geology, home economics, medicine, oceanography, physics, psychology, sociology, and space science Nonparametric Statistical Methods, Third Edition is an excellent reference for applied statisticians and practitioners who seek a review of nonparametric methods and their relevant applications. The book is also an ideal textbook for upper-undergraduate and first-year graduate courses in applied nonparametric statistics.

Nonparametric Statistics with Applications to Science and Engineering

Nonparametric Statistics with Applications to Science and Engineering PDF Author: Paul H. Kvam
Publisher: John Wiley & Sons
ISBN: 9780470168691
Category : Mathematics
Languages : en
Pages : 448

Get Book Here

Book Description
A thorough and definitive book that fully addresses traditional and modern-day topics of nonparametric statistics This book presents a practical approach to nonparametric statistical analysis and provides comprehensive coverage of both established and newly developed methods. With the use of MATLAB, the authors present information on theorems and rank tests in an applied fashion, with an emphasis on modern methods in regression and curve fitting, bootstrap confidence intervals, splines, wavelets, empirical likelihood, and goodness-of-fit testing. Nonparametric Statistics with Applications to Science and Engineering begins with succinct coverage of basic results for order statistics, methods of categorical data analysis, nonparametric regression, and curve fitting methods. The authors then focus on nonparametric procedures that are becoming more relevant to engineering researchers and practitioners. The important fundamental materials needed to effectively learn and apply the discussed methods are also provided throughout the book. Complete with exercise sets, chapter reviews, and a related Web site that features downloadable MATLAB applications, this book is an essential textbook for graduate courses in engineering and the physical sciences and also serves as a valuable reference for researchers who seek a more comprehensive understanding of modern nonparametric statistical methods.

Introduction to Nonparametric Estimation

Introduction to Nonparametric Estimation PDF Author: Alexandre B. Tsybakov
Publisher: Springer Science & Business Media
ISBN: 0387790527
Category : Mathematics
Languages : en
Pages : 222

Get Book Here

Book Description
Developed from lecture notes and ready to be used for a course on the graduate level, this concise text aims to introduce the fundamental concepts of nonparametric estimation theory while maintaining the exposition suitable for a first approach in the field.

Theory and Applications of Sequential Nonparametrics

Theory and Applications of Sequential Nonparametrics PDF Author: Pranab Kumar Sen
Publisher: SIAM
ISBN: 0898710510
Category : Mathematics
Languages : en
Pages : 106

Get Book Here

Book Description
A study of sequential nonparametric methods emphasizing the unified Martingale approach to the theory, with a detailed explanation of major applications including problems arising in clinical trials, life-testing experimentation, survival analysis, classical sequential analysis and other areas of applied statistics and biostatistics.

A Distribution-Free Theory of Nonparametric Regression

A Distribution-Free Theory of Nonparametric Regression PDF Author: László Györfi
Publisher: Springer Science & Business Media
ISBN: 0387224424
Category : Mathematics
Languages : en
Pages : 662

Get Book Here

Book Description
This book provides a systematic in-depth analysis of nonparametric regression with random design. It covers almost all known estimates. The emphasis is on distribution-free properties of the estimates.

Nonparametric Statistical Methods Using R

Nonparametric Statistical Methods Using R PDF Author: John Kloke
Publisher: CRC Press
ISBN: 1439873445
Category : Mathematics
Languages : en
Pages : 283

Get Book Here

Book Description
A Practical Guide to Implementing Nonparametric and Rank-Based Procedures Nonparametric Statistical Methods Using R covers traditional nonparametric methods and rank-based analyses, including estimation and inference for models ranging from simple location models to general linear and nonlinear models for uncorrelated and correlated responses. The authors emphasize applications and statistical computation. They illustrate the methods with many real and simulated data examples using R, including the packages Rfit and npsm. The book first gives an overview of the R language and basic statistical concepts before discussing nonparametrics. It presents rank-based methods for one- and two-sample problems, procedures for regression models, computation for general fixed-effects ANOVA and ANCOVA models, and time-to-event analyses. The last two chapters cover more advanced material, including high breakdown fits for general regression models and rank-based inference for cluster correlated data. The book can be used as a primary text or supplement in a course on applied nonparametric or robust procedures and as a reference for researchers who need to implement nonparametric and rank-based methods in practice. Through numerous examples, it shows readers how to apply these methods using R.