Nonparametric Statistical Methods

Nonparametric Statistical Methods PDF Author: Myles Hollander
Publisher: John Wiley & Sons
ISBN: 1118553292
Category : Mathematics
Languages : en
Pages : 872

Get Book Here

Book Description
Praise for the Second Edition “This book should be an essential part of the personal library of every practicing statistician.”—Technometrics Thoroughly revised and updated, the new edition of Nonparametric Statistical Methods includes additional modern topics and procedures, more practical data sets, and new problems from real-life situations. The book continues to emphasize the importance of nonparametric methods as a significant branch of modern statistics and equips readers with the conceptual and technical skills necessary to select and apply the appropriate procedures for any given situation. Written by leading statisticians, Nonparametric Statistical Methods, Third Edition provides readers with crucial nonparametric techniques in a variety of settings, emphasizing the assumptions underlying the methods. The book provides an extensive array of examples that clearly illustrate how to use nonparametric approaches for handling one- or two-sample location and dispersion problems, dichotomous data, and one-way and two-way layout problems. In addition, the Third Edition features: The use of the freely available R software to aid in computation and simulation, including many new R programs written explicitly for this new edition New chapters that address density estimation, wavelets, smoothing, ranked set sampling, and Bayesian nonparametrics Problems that illustrate examples from agricultural science, astronomy, biology, criminology, education, engineering, environmental science, geology, home economics, medicine, oceanography, physics, psychology, sociology, and space science Nonparametric Statistical Methods, Third Edition is an excellent reference for applied statisticians and practitioners who seek a review of nonparametric methods and their relevant applications. The book is also an ideal textbook for upper-undergraduate and first-year graduate courses in applied nonparametric statistics.

Nonparametric Statistical Methods

Nonparametric Statistical Methods PDF Author: Myles Hollander
Publisher: John Wiley & Sons
ISBN: 1118553292
Category : Mathematics
Languages : en
Pages : 872

Get Book Here

Book Description
Praise for the Second Edition “This book should be an essential part of the personal library of every practicing statistician.”—Technometrics Thoroughly revised and updated, the new edition of Nonparametric Statistical Methods includes additional modern topics and procedures, more practical data sets, and new problems from real-life situations. The book continues to emphasize the importance of nonparametric methods as a significant branch of modern statistics and equips readers with the conceptual and technical skills necessary to select and apply the appropriate procedures for any given situation. Written by leading statisticians, Nonparametric Statistical Methods, Third Edition provides readers with crucial nonparametric techniques in a variety of settings, emphasizing the assumptions underlying the methods. The book provides an extensive array of examples that clearly illustrate how to use nonparametric approaches for handling one- or two-sample location and dispersion problems, dichotomous data, and one-way and two-way layout problems. In addition, the Third Edition features: The use of the freely available R software to aid in computation and simulation, including many new R programs written explicitly for this new edition New chapters that address density estimation, wavelets, smoothing, ranked set sampling, and Bayesian nonparametrics Problems that illustrate examples from agricultural science, astronomy, biology, criminology, education, engineering, environmental science, geology, home economics, medicine, oceanography, physics, psychology, sociology, and space science Nonparametric Statistical Methods, Third Edition is an excellent reference for applied statisticians and practitioners who seek a review of nonparametric methods and their relevant applications. The book is also an ideal textbook for upper-undergraduate and first-year graduate courses in applied nonparametric statistics.

Nonparametric Statistical Methods Using R

Nonparametric Statistical Methods Using R PDF Author: John Kloke
Publisher: CRC Press
ISBN: 1439873445
Category : Mathematics
Languages : en
Pages : 283

Get Book Here

Book Description
A Practical Guide to Implementing Nonparametric and Rank-Based Procedures Nonparametric Statistical Methods Using R covers traditional nonparametric methods and rank-based analyses, including estimation and inference for models ranging from simple location models to general linear and nonlinear models for uncorrelated and correlated responses. The authors emphasize applications and statistical computation. They illustrate the methods with many real and simulated data examples using R, including the packages Rfit and npsm. The book first gives an overview of the R language and basic statistical concepts before discussing nonparametrics. It presents rank-based methods for one- and two-sample problems, procedures for regression models, computation for general fixed-effects ANOVA and ANCOVA models, and time-to-event analyses. The last two chapters cover more advanced material, including high breakdown fits for general regression models and rank-based inference for cluster correlated data. The book can be used as a primary text or supplement in a course on applied nonparametric or robust procedures and as a reference for researchers who need to implement nonparametric and rank-based methods in practice. Through numerous examples, it shows readers how to apply these methods using R.

Robust Nonparametric Statistical Methods

Robust Nonparametric Statistical Methods PDF Author: Thomas P. Hettmansperger
Publisher: John Wiley & Sons
ISBN:
Category : Nonparametric statistics
Languages : en
Pages : 492

Get Book Here

Book Description
Offering an alternative to traditional statistical procedures which are based on least squares fitting, the authors cover such topics as one and two sample location models, linear models, and multivariate models. Both theory and applications are examined.

Nonparametric Statistical Methods For Complete and Censored Data

Nonparametric Statistical Methods For Complete and Censored Data PDF Author: M.M. Desu
Publisher: CRC Press
ISBN: 9781584883197
Category : Mathematics
Languages : en
Pages : 392

Get Book Here

Book Description
Balancing the "cookbook" approach of some texts with the more mathematical approach of others, Nonparametric Statistical Methods for Complete and Censored Data introduces commonly used non-parametric methods for complete data and extends those methods to right censored data analysis. Whenever possible, the authors derive their methodology from the general theory of statistical inference and introduce the concepts intuitively for students with minimal backgrounds. Derivations and mathematical details are relegated to appendices at the end of each chapter, which allows students to easily proceed through each chapter without becoming bogged down in a lot of mathematics. In addition to the nonparametric methods for analyzing complete and censored data, the book covers optimal linear rank statistics, clinical equivalence, analysis of block designs, and precedence tests. To make the material more accessible and practical, the authors use SAS programs to illustrate the various methods included. Exercises in each chapter, SAS code, and a clear, accessible presentation make this an outstanding text for a one-semester senior or graduate-level course in nonparametric statistics for students in a variety of disciplines, from statistics and biostatistics to business, psychology, and the social scientists. Prerequisites: Students will need a solid background in calculus and a two-semester course in mathematical statistics.

All of Nonparametric Statistics

All of Nonparametric Statistics PDF Author: Larry Wasserman
Publisher: Springer Science & Business Media
ISBN: 0387306234
Category : Mathematics
Languages : en
Pages : 272

Get Book Here

Book Description
This text provides the reader with a single book where they can find accounts of a number of up-to-date issues in nonparametric inference. The book is aimed at Masters or PhD level students in statistics, computer science, and engineering. It is also suitable for researchers who want to get up to speed quickly on modern nonparametric methods. It covers a wide range of topics including the bootstrap, the nonparametric delta method, nonparametric regression, density estimation, orthogonal function methods, minimax estimation, nonparametric confidence sets, and wavelets. The book’s dual approach includes a mixture of methodology and theory.

An Introduction to Nonparametric Statistics

An Introduction to Nonparametric Statistics PDF Author: John E. Kolassa
Publisher: CRC Press
ISBN: 0429511361
Category : Mathematics
Languages : en
Pages : 225

Get Book Here

Book Description
An Introduction to Nonparametric Statistics presents techniques for statistical analysis in the absence of strong assumptions about the distributions generating the data. Rank-based and resampling techniques are heavily represented, but robust techniques are considered as well. These techniques include one-sample testing and estimation, multi-sample testing and estimation, and regression. Attention is paid to the intellectual development of the field, with a thorough review of bibliographical references. Computational tools, in R and SAS, are developed and illustrated via examples. Exercises designed to reinforce examples are included. Features Rank-based techniques including sign, Kruskal-Wallis, Friedman, Mann-Whitney and Wilcoxon tests are presented Tests are inverted to produce estimates and confidence intervals Multivariate tests are explored Techniques reflecting the dependence of a response variable on explanatory variables are presented Density estimation is explored The bootstrap and jackknife are discussed This text is intended for a graduate student in applied statistics. The course is best taken after an introductory course in statistical methodology, elementary probability, and regression. Mathematical prerequisites include calculus through multivariate differentiation and integration, and, ideally, a course in matrix algebra.

Applied Nonparametric Statistical Methods

Applied Nonparametric Statistical Methods PDF Author: Peter Sprent
Publisher: Springer Science & Business Media
ISBN: 9400912234
Category : Science
Languages : en
Pages : 268

Get Book Here

Book Description
This book is a practical introduction to statistical techniques called nonpara metric methods. Using examples, we explain assumptions and demonstrate procedures; theory is kept to a minimum. We show how basic problems are tackled and try to clear up common misapprehensions so as to help both students of statistics meeting the methods for the first time and workers in other fields faced with data needing simple but informative analysis. An analogy between experimenters and car drivers describes our aim. Statistical analyses may be done by following a set of rules without understanding their logical basis, but this has dangers. It is like driving a car with no inkling ofhow the internal combustion engine, the gears, the ignition system, the brakes actually work. Understanding the rudiments helps one get better performance and makesdrivingsafer;appropriate gearchanges become a way to reduce engine stress, prolong engine life, improve fuel economy, minimize wear on brake linings. Knowing how to change the engine oil or replace worn sparking plugs is notessential for adriver, but it will reduce costs. Learning such basics will not make one a fully fledged mechanic, even less an automotive engineer; but it all contributes to more economical and safer driving, alertingone to the dangers ofbald tyres, aleakingexhaust, worn brake linings.

Nonparametric Methods in Statistics with SAS Applications

Nonparametric Methods in Statistics with SAS Applications PDF Author: Olga Korosteleva
Publisher: CRC Press
ISBN: 1466580631
Category : Mathematics
Languages : en
Pages : 193

Get Book Here

Book Description
Designed for a graduate course in applied statistics, Nonparametric Methods in Statistics with SAS Applications teaches students how to apply nonparametric techniques to statistical data. It starts with the tests of hypotheses and moves on to regression modeling, time-to-event analysis, density estimation, and resampling methods.The text begins wit

Nonparametric Statistics

Nonparametric Statistics PDF Author: Gregory W. Corder
Publisher: John Wiley & Sons
ISBN: 1118840429
Category : Mathematics
Languages : en
Pages : 288

Get Book Here

Book Description
“...a very useful resource for courses in nonparametric statistics in which the emphasis is on applications rather than on theory. It also deserves a place in libraries of all institutions where introductory statistics courses are taught." –CHOICE This Second Edition presents a practical and understandable approach that enhances and expands the statistical toolset for readers. This book includes: New coverage of the sign test and the Kolmogorov-Smirnov two-sample test in an effort to offer a logical and natural progression to statistical power SPSS® (Version 21) software and updated screen captures to demonstrate how to perform and recognize the steps in the various procedures Data sets and odd-numbered solutions provided in an appendix, and tables of critical values Supplementary material to aid in reader comprehension, which includes: narrated videos and screen animations with step-by-step instructions on how to follow the tests using SPSS; online decision trees to help users determine the needed type of statistical test; and additional solutions not found within the book.

Nonparametric Statistical Tests

Nonparametric Statistical Tests PDF Author: Markus Neuhauser
Publisher: CRC Press
ISBN: 1439867046
Category : Mathematics
Languages : en
Pages : 247

Get Book Here

Book Description
Nonparametric Statistical Tests: A Computational Approach describes classical nonparametric tests, as well as novel and little-known methods such as the Baumgartner-Weiss-Schindler and the Cucconi tests. The book presents SAS and R programs, allowing readers to carry out the different statistical methods, such as permutation and bootstrap tests. Th