Multivariate Nonparametric Methods with R

Multivariate Nonparametric Methods with R PDF Author: Hannu Oja
Publisher: Springer Science & Business Media
ISBN: 1441904689
Category : Mathematics
Languages : en
Pages : 239

Get Book Here

Book Description
This book offers a new, fairly efficient, and robust alternative to analyzing multivariate data. The analysis of data based on multivariate spatial signs and ranks proceeds very much as does a traditional multivariate analysis relying on the assumption of multivariate normality; the regular L2 norm is just replaced by different L1 norms, observation vectors are replaced by spatial signs and ranks, and so on. A unified methodology starting with the simple one-sample multivariate location problem and proceeding to the general multivariate multiple linear regression case is presented. Companion estimates and tests for scatter matrices are considered as well. The R package MNM is available for computation of the procedures. This monograph provides an up-to-date overview of the theory of multivariate nonparametric methods based on spatial signs and ranks. The classical book by Puri and Sen (1971) uses marginal signs and ranks and different type of L1 norm. The book may serve as a textbook and a general reference for the latest developments in the area. Readers are assumed to have a good knowledge of basic statistical theory as well as matrix theory. Hannu Oja is an academy professor and a professor in biometry in the University of Tampere. He has authored and coauthored numerous research articles in multivariate nonparametrical and robust methods as well as in biostatistics.

Multivariate Nonparametric Methods with R

Multivariate Nonparametric Methods with R PDF Author: Hannu Oja
Publisher: Springer Science & Business Media
ISBN: 1441904689
Category : Mathematics
Languages : en
Pages : 239

Get Book Here

Book Description
This book offers a new, fairly efficient, and robust alternative to analyzing multivariate data. The analysis of data based on multivariate spatial signs and ranks proceeds very much as does a traditional multivariate analysis relying on the assumption of multivariate normality; the regular L2 norm is just replaced by different L1 norms, observation vectors are replaced by spatial signs and ranks, and so on. A unified methodology starting with the simple one-sample multivariate location problem and proceeding to the general multivariate multiple linear regression case is presented. Companion estimates and tests for scatter matrices are considered as well. The R package MNM is available for computation of the procedures. This monograph provides an up-to-date overview of the theory of multivariate nonparametric methods based on spatial signs and ranks. The classical book by Puri and Sen (1971) uses marginal signs and ranks and different type of L1 norm. The book may serve as a textbook and a general reference for the latest developments in the area. Readers are assumed to have a good knowledge of basic statistical theory as well as matrix theory. Hannu Oja is an academy professor and a professor in biometry in the University of Tampere. He has authored and coauthored numerous research articles in multivariate nonparametrical and robust methods as well as in biostatistics.

Multivariate Nonparametric Regression and Visualization

Multivariate Nonparametric Regression and Visualization PDF Author: Jussi Sakari Klemelä
Publisher: John Wiley & Sons
ISBN: 1118593502
Category : Mathematics
Languages : en
Pages : 317

Get Book Here

Book Description
A modern approach to statistical learning and its applications through visualization methods With a unique and innovative presentation, Multivariate Nonparametric Regression and Visualization provides readers with the core statistical concepts to obtain complete and accurate predictions when given a set of data. Focusing on nonparametric methods to adapt to the multiple types of data generating mechanisms, the book begins with an overview of classification and regression. The book then introduces and examines various tested and proven visualization techniques for learning samples and functions. Multivariate Nonparametric Regression and Visualization identifies risk management, portfolio selection, and option pricing as the main areas in which statistical methods may be implemented in quantitative finance. The book provides coverage of key statistical areas including linear methods, kernel methods, additive models and trees, boosting, support vector machines, and nearest neighbor methods. Exploring the additional applications of nonparametric and semiparametric methods, Multivariate Nonparametric Regression and Visualization features: An extensive appendix with R-package training material to encourage duplication and modification of the presented computations and research Multiple examples to demonstrate the applications in the field of finance Sections with formal definitions of the various applied methods for readers to utilize throughout the book Multivariate Nonparametric Regression and Visualization is an ideal textbook for upper-undergraduate and graduate-level courses on nonparametric function estimation, advanced topics in statistics, and quantitative finance. The book is also an excellent reference for practitioners who apply statistical methods in quantitative finance.

Nonparametric Methods in Multivariate Analysis

Nonparametric Methods in Multivariate Analysis PDF Author: Madan Lal Puri
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 464

Get Book Here

Book Description


Nonparametric Methods in Multivariate Analysis

Nonparametric Methods in Multivariate Analysis PDF Author: Madan Lal Puri
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 472

Get Book Here

Book Description
A brief outline of the material covered in the book. Preliminaries. A survey of nonparametric inference. Rank tests for the multivariate single-sample location problems. Multivariate multisample rank tests for location and scale. Estimators in linear models (one way layouts) based on rank tests. Rank procedures in factorial experiments. Rank tests for independence. Rank tests for homogeneity of dispersion matrices.

Robust Nonparametric Statistical Methods

Robust Nonparametric Statistical Methods PDF Author: Thomas P. Hettmansperger
Publisher: John Wiley & Sons
ISBN:
Category : Nonparametric statistics
Languages : en
Pages : 492

Get Book Here

Book Description
Offering an alternative to traditional statistical procedures which are based on least squares fitting, the authors cover such topics as one and two sample location models, linear models, and multivariate models. Both theory and applications are examined.

Modern Multivariate Statistical Techniques

Modern Multivariate Statistical Techniques PDF Author: Alan J. Izenman
Publisher: Springer Science & Business Media
ISBN: 0387781897
Category : Mathematics
Languages : en
Pages : 757

Get Book Here

Book Description
This is the first book on multivariate analysis to look at large data sets which describes the state of the art in analyzing such data. Material such as database management systems is included that has never appeared in statistics books before.

Methods of Multivariate Analysis

Methods of Multivariate Analysis PDF Author: Alvin C. Rencher
Publisher: John Wiley & Sons
ISBN: 0471461725
Category : Mathematics
Languages : en
Pages : 739

Get Book Here

Book Description
Amstat News asked three review editors to rate their top five favorite books in the September 2003 issue. Methods of Multivariate Analysis was among those chosen. When measuring several variables on a complex experimental unit, it is often necessary to analyze the variables simultaneously, rather than isolate them and consider them individually. Multivariate analysis enables researchers to explore the joint performance of such variables and to determine the effect of each variable in the presence of the others. The Second Edition of Alvin Rencher's Methods of Multivariate Analysis provides students of all statistical backgrounds with both the fundamental and more sophisticated skills necessary to master the discipline. To illustrate multivariate applications, the author provides examples and exercises based on fifty-nine real data sets from a wide variety of scientific fields. Rencher takes a "methods" approach to his subject, with an emphasis on how students and practitioners can employ multivariate analysis in real-life situations. The Second Edition contains revised and updated chapters from the critically acclaimed First Edition as well as brand-new chapters on: Cluster analysis Multidimensional scaling Correspondence analysis Biplots Each chapter contains exercises, with corresponding answers and hints in the appendix, providing students the opportunity to test and extend their understanding of the subject. Methods of Multivariate Analysis provides an authoritative reference for statistics students as well as for practicing scientists and clinicians.

Nonparametric Methods

Nonparametric Methods PDF Author: P. R. Krishnaiah
Publisher: Elsevier Health Sciences
ISBN:
Category : Mathematics
Languages : en
Pages : 1016

Get Book Here

Book Description
Classical developments. Linear models. Order statistics and empitical distribution. Estimation procedures. Stochastic aproximation and density estimation. Life testing and reliability. Miscellaneous topics. Applications. Tables.

An Introduction to Nonparametric Statistics

An Introduction to Nonparametric Statistics PDF Author: John E. Kolassa
Publisher: CRC Press
ISBN: 0429511361
Category : Mathematics
Languages : en
Pages : 225

Get Book Here

Book Description
An Introduction to Nonparametric Statistics presents techniques for statistical analysis in the absence of strong assumptions about the distributions generating the data. Rank-based and resampling techniques are heavily represented, but robust techniques are considered as well. These techniques include one-sample testing and estimation, multi-sample testing and estimation, and regression. Attention is paid to the intellectual development of the field, with a thorough review of bibliographical references. Computational tools, in R and SAS, are developed and illustrated via examples. Exercises designed to reinforce examples are included. Features Rank-based techniques including sign, Kruskal-Wallis, Friedman, Mann-Whitney and Wilcoxon tests are presented Tests are inverted to produce estimates and confidence intervals Multivariate tests are explored Techniques reflecting the dependence of a response variable on explanatory variables are presented Density estimation is explored The bootstrap and jackknife are discussed This text is intended for a graduate student in applied statistics. The course is best taken after an introductory course in statistical methodology, elementary probability, and regression. Mathematical prerequisites include calculus through multivariate differentiation and integration, and, ideally, a course in matrix algebra.

Robust Rank-Based and Nonparametric Methods

Robust Rank-Based and Nonparametric Methods PDF Author: Regina Y. Liu
Publisher: Springer
ISBN: 3319390651
Category : Mathematics
Languages : en
Pages : 284

Get Book Here

Book Description
The contributors to this volume include many of the distinguished researchers in this area. Many of these scholars have collaborated with Joseph McKean to develop underlying theory for these methods, obtain small sample corrections, and develop efficient algorithms for their computation. The papers cover the scope of the area, including robust nonparametric rank-based procedures through Bayesian and big data rank-based analyses. Areas of application include biostatistics and spatial areas. Over the last 30 years, robust rank-based and nonparametric methods have developed considerably. These procedures generalize traditional Wilcoxon-type methods for one- and two-sample location problems. Research into these procedures has culminated in complete analyses for many of the models used in practice including linear, generalized linear, mixed, and nonlinear models. Settings are both multivariate and univariate. With the development of R packages in these areas, computation of these procedures is easily shared with readers and implemented. This book is developed from the International Conference on Robust Rank-Based and Nonparametric Methods, held at Western Michigan University in April 2015.