Nonnegative Matrices, Positive Operators, And Applications

Nonnegative Matrices, Positive Operators, And Applications PDF Author: Aihui Zhou
Publisher: World Scientific Publishing Company
ISBN: 981310743X
Category : Mathematics
Languages : en
Pages : 362

Get Book Here

Book Description
Nonnegative matrices and positive operators are widely applied in science, engineering, and technology. This book provides the basic theory and several typical modern science and engineering applications of nonnegative matrices and positive operators, including the fundamental theory, methods, numerical analysis, and applications in the Google search engine, computational molecular dynamics, and wireless communications.Unique features of this book include the combination of the theories of nonnegative matrices and positive operators as well as the emphasis on applications of nonnegative matrices in the numerical analysis of positive operators, such as Markov operators and Frobenius-Perron operators both of which play key roles in the statistical and stochastic studies of dynamical systems.It can be used as a textbook for an upper level undergraduate or beginning graduate course in advanced matrix theory and/or positive operators as well as for an advanced topics course in operator theory or ergodic theory. In addition, it serves as a good reference for researchers in mathematical sciences, physical sciences, and engineering.

Nonnegative Matrices, Positive Operators, And Applications

Nonnegative Matrices, Positive Operators, And Applications PDF Author: Aihui Zhou
Publisher: World Scientific Publishing Company
ISBN: 981310743X
Category : Mathematics
Languages : en
Pages : 362

Get Book Here

Book Description
Nonnegative matrices and positive operators are widely applied in science, engineering, and technology. This book provides the basic theory and several typical modern science and engineering applications of nonnegative matrices and positive operators, including the fundamental theory, methods, numerical analysis, and applications in the Google search engine, computational molecular dynamics, and wireless communications.Unique features of this book include the combination of the theories of nonnegative matrices and positive operators as well as the emphasis on applications of nonnegative matrices in the numerical analysis of positive operators, such as Markov operators and Frobenius-Perron operators both of which play key roles in the statistical and stochastic studies of dynamical systems.It can be used as a textbook for an upper level undergraduate or beginning graduate course in advanced matrix theory and/or positive operators as well as for an advanced topics course in operator theory or ergodic theory. In addition, it serves as a good reference for researchers in mathematical sciences, physical sciences, and engineering.

Nonnegative Matrices in the Mathematical Sciences

Nonnegative Matrices in the Mathematical Sciences PDF Author: Abraham Berman
Publisher: Academic Press
ISBN: 1483260860
Category : Mathematics
Languages : en
Pages : 337

Get Book Here

Book Description
Nonnegative Matrices in the Mathematical Sciences provides information pertinent to the fundamental aspects of the theory of nonnegative matrices. This book describes selected applications of the theory to numerical analysis, probability, economics, and operations research. Organized into 10 chapters, this book begins with an overview of the properties of nonnegative matrices. This text then examines the inverse-positive matrices. Other chapters consider the basic approaches to the study of nonnegative matrices, namely, geometrical and combinatorial. This book discusses as well some useful ideas from the algebraic theory of semigroups and considers a canonical form for nonnegative idempotent matrices and special types of idempotent matrices. The final chapter deals with the linear complementary problem (LCP). This book is a valuable resource for mathematical economists, mathematical programmers, statisticians, mathematicians, and computer scientists.

Positive Operator Semigroups

Positive Operator Semigroups PDF Author: András Bátkai
Publisher: Birkhäuser
ISBN: 3319428136
Category : Mathematics
Languages : en
Pages : 366

Get Book Here

Book Description
This book gives a gentle but up-to-date introduction into the theory of operator semigroups (or linear dynamical systems), which can be used with great success to describe the dynamics of complicated phenomena arising in many applications. Positivity is a property which naturally appears in physical, chemical, biological or economic processes. It adds a beautiful and far reaching mathematical structure to the dynamical systems and operators describing these processes. In the first part, the finite dimensional theory in a coordinate-free way is developed, which is difficult to find in literature. This is a good opportunity to present the main ideas of the Perron-Frobenius theory in a way which can be used in the infinite dimensional situation. Applications to graph matrices, age structured population models and economic models are discussed. The infinite dimensional theory of positive operator semigroups with their spectral and asymptotic theory is developed in the second part. Recent applications illustrate the theory, like population equations, neutron transport theory, delay equations or flows in networks. Each chapter is accompanied by a large set of exercises. An up-to-date bibliography and a detailed subject index help the interested reader. The book is intended primarily for graduate and master students. The finite dimensional part, however, can be followed by an advanced bachelor with a solid knowledge of linear algebra and calculus.

Completely Positive Matrices

Completely Positive Matrices PDF Author: Abraham Berman
Publisher: World Scientific
ISBN: 9789812795212
Category : Mathematics
Languages : en
Pages : 222

Get Book Here

Book Description
A real matrix is positive semidefinite if it can be decomposed as A = BBOC . In some applications the matrix B has to be elementwise nonnegative. If such a matrix exists, A is called completely positive. The smallest number of columns of a nonnegative matrix B such that A = BBOC is known as the cp- rank of A . This invaluable book focuses on necessary conditions and sufficient conditions for complete positivity, as well as bounds for the cp- rank. The methods are combinatorial, geometric and algebraic. The required background on nonnegative matrices, cones, graphs and Schur complements is outlined. Contents: Preliminaries: Matrix Theoretic Background; Positive Semidefinite Matrices; Nonnegative Matrices and M -Matrices; Schur Complements; Graphs; Convex Cones; The PSD Completion Problem; Complete Positivity: Definition and Basic Properties; Cones of Completely Positive Matrices; Small Matrices; Complete Positivity and the Comparison Matrix; Completely Positive Graphs; Completely Positive Matrices Whose Graphs are Not Completely Positive; Square Factorizations; Functions of Completely Positive Matrices; The CP Completion Problem; CP Rank: Definition and Basic Results; Completely Positive Matrices of a Given Rank; Completely Positive Matrices of a Given Order; When is the CP-Rank Equal to the Rank?. Readership: Upper level undergraduates, graduate students, academics and researchers interested in matrix theory."

Positive Systems: Theory and Applications

Positive Systems: Theory and Applications PDF Author: Luca Benvenuti
Publisher: Springer Science & Business Media
ISBN: 9783540403425
Category : Technology & Engineering
Languages : en
Pages : 428

Get Book Here

Book Description
The proceedings of the First Multidisciplinary International Symposium on Positive Systems Theory and Applications (POSTA 2003) held in Rome, Italy, August 28-30, 2003. Positive Systems are systems in which the relevant variables assume nonnegative values. These systems are quite common in applications where variables represent positive quantities such as populations, goods, money, time, data packets flowing in a network, densities of chemical species, probabilities, etc. The aim of the symposium was to join together researchers working in the different areas related to positive systems such as telecommunications, economy, biomedicine, chemistry and physics in order to provide a multidisciplinary forum where they have the opportunity to exchange ideas and compare results in a unifying framework.

Matrix Algebra and Its Applications to Statistics and Econometrics

Matrix Algebra and Its Applications to Statistics and Econometrics PDF Author: Calyampudi Radhakrishna Rao
Publisher: World Scientific
ISBN: 9789810232689
Category : Mathematics
Languages : en
Pages : 560

Get Book Here

Book Description
"I recommend this book for its extensive coverage of topics not easily found elsewhere and for its focus on applications".Zentralblatt MATH"The book is an excellent source on linear algebra, matrix theory and applications in statistics and econometrics, and is unique in many ways. I recommend it to anyone interested in these disciplines, and especially in how they benefit from one another".Statistical Papers, 2000

Totally Nonnegative Matrices

Totally Nonnegative Matrices PDF Author: Shaun M. Fallat
Publisher: Princeton University Press
ISBN: 1400839017
Category : Mathematics
Languages : en
Pages : 265

Get Book Here

Book Description
Totally nonnegative matrices arise in a remarkable variety of mathematical applications. This book is a comprehensive and self-contained study of the essential theory of totally nonnegative matrices, defined by the nonnegativity of all subdeterminants. It explores methodological background, historical highlights of key ideas, and specialized topics. The book uses classical and ad hoc tools, but a unifying theme is the elementary bidiagonal factorization, which has emerged as the single most important tool for this particular class of matrices. Recent work has shown that bidiagonal factorizations may be viewed in a succinct combinatorial way, leading to many deep insights. Despite slow development, bidiagonal factorizations, along with determinants, now provide the dominant methodology for understanding total nonnegativity. The remainder of the book treats important topics, such as recognition of totally nonnegative or totally positive matrices, variation diminution, spectral properties, determinantal inequalities, Hadamard products, and completion problems associated with totally nonnegative or totally positive matrices. The book also contains sample applications, an up-to-date bibliography, a glossary of all symbols used, an index, and related references.

Introduction to Matrix Analysis and Applications

Introduction to Matrix Analysis and Applications PDF Author: Fumio Hiai
Publisher: Springer Science & Business Media
ISBN: 3319041509
Category : Mathematics
Languages : en
Pages : 337

Get Book Here

Book Description
Matrices can be studied in different ways. They are a linear algebraic structure and have a topological/analytical aspect (for example, the normed space of matrices) and they also carry an order structure that is induced by positive semidefinite matrices. The interplay of these closely related structures is an essential feature of matrix analysis. This book explains these aspects of matrix analysis from a functional analysis point of view. After an introduction to matrices and functional analysis, it covers more advanced topics such as matrix monotone functions, matrix means, majorization and entropies. Several applications to quantum information are also included. Introduction to Matrix Analysis and Applications is appropriate for an advanced graduate course on matrix analysis, particularly aimed at studying quantum information. It can also be used as a reference for researchers in quantum information, statistics, engineering and economics.

Non-negative Matrices and Markov Chains

Non-negative Matrices and Markov Chains PDF Author: E. Seneta
Publisher: Springer Science & Business Media
ISBN: 0387327924
Category : Mathematics
Languages : en
Pages : 295

Get Book Here

Book Description
Since its inception by Perron and Frobenius, the theory of non-negative matrices has developed enormously and is now being used and extended in applied fields of study as diverse as probability theory, numerical analysis, demography, mathematical economics, and dynamic programming, while its development is still proceeding rapidly as a branch of pure mathematics in its own right. While there are books which cover this or that aspect of the theory, it is nevertheless not uncommon for workers in one or another branch of its development to be unaware of what is known in other branches, even though there is often formal overlap. One of the purposes of this book is to relate several aspects of the theory, insofar as this is possible. The author hopes that the book will be useful to mathematicians; but in particular to the workers in applied fields, so the mathematics has been kept as simple as could be managed. The mathematical requisites for reading it are: some knowledge of real-variable theory, and matrix theory; and a little knowledge of complex-variable; the emphasis is on real-variable methods. (There is only one part of the book, the second part of 55.5, which is of rather specialist interest, and requires deeper knowledge.) Appendices provide brief expositions of those areas of mathematics needed which may be less g- erally known to the average reader.

Positive Definite Matrices

Positive Definite Matrices PDF Author: Rajendra Bhatia
Publisher: Princeton University Press
ISBN: 0691168253
Category : Mathematics
Languages : en
Pages : 264

Get Book Here

Book Description
This book represents the first synthesis of the considerable body of new research into positive definite matrices. These matrices play the same role in noncommutative analysis as positive real numbers do in classical analysis. They have theoretical and computational uses across a broad spectrum of disciplines, including calculus, electrical engineering, statistics, physics, numerical analysis, quantum information theory, and geometry. Through detailed explanations and an authoritative and inspiring writing style, Rajendra Bhatia carefully develops general techniques that have wide applications in the study of such matrices. Bhatia introduces several key topics in functional analysis, operator theory, harmonic analysis, and differential geometry--all built around the central theme of positive definite matrices. He discusses positive and completely positive linear maps, and presents major theorems with simple and direct proofs. He examines matrix means and their applications, and shows how to use positive definite functions to derive operator inequalities that he and others proved in recent years. He guides the reader through the differential geometry of the manifold of positive definite matrices, and explains recent work on the geometric mean of several matrices. Positive Definite Matrices is an informative and useful reference book for mathematicians and other researchers and practitioners. The numerous exercises and notes at the end of each chapter also make it the ideal textbook for graduate-level courses.