Author: S.S. Shen
Publisher: Springer
ISBN: 0792322924
Category : Mathematics
Languages : en
Pages : 327
Book Description
The aim of this book is to give a self-contained introduction to the mathe matical analysis and physical explanations of some basic nonlinear wave phe nomena. This volume grew out of lecture notes for graduate courf;!es which I gave at the University of Alberta, the University of Saskatchewan, ·and Texas A&M University. As an introduction it is not intended to be exhaustive iQ its choice of material, but rather to convey to interested readers a basic; yet practical, methodology as well as some of the more important results obtained since the 1950's. Although the primary purpose of this volume is to serve as a textbook, it should be useful to anyone who wishes to understand or conduct research into nonlinear waves. Here, for the first time, materials on X-ray crystallography and the forced Korteweg-de Vries equation are incorporated naturally into a textbook on non linear waves. Another characteristic feature of the book is the inclusion of four symbolic calculation programs written in MATHEMATICA. They emphasize outcomes rather than numerical methods and provide certain symbolic and nu merical results related to solitons. Requiring only one or two commands to run, these programs have user-friendly interfaces. For example, to get the explicit expression of the 2-soliton of the Korteweg-de Vries equation, one only needs to type in soliton[2] when using the program solipac.m.
A Course on Nonlinear Waves
Author: S.S. Shen
Publisher: Springer
ISBN: 0792322924
Category : Mathematics
Languages : en
Pages : 327
Book Description
The aim of this book is to give a self-contained introduction to the mathe matical analysis and physical explanations of some basic nonlinear wave phe nomena. This volume grew out of lecture notes for graduate courf;!es which I gave at the University of Alberta, the University of Saskatchewan, ·and Texas A&M University. As an introduction it is not intended to be exhaustive iQ its choice of material, but rather to convey to interested readers a basic; yet practical, methodology as well as some of the more important results obtained since the 1950's. Although the primary purpose of this volume is to serve as a textbook, it should be useful to anyone who wishes to understand or conduct research into nonlinear waves. Here, for the first time, materials on X-ray crystallography and the forced Korteweg-de Vries equation are incorporated naturally into a textbook on non linear waves. Another characteristic feature of the book is the inclusion of four symbolic calculation programs written in MATHEMATICA. They emphasize outcomes rather than numerical methods and provide certain symbolic and nu merical results related to solitons. Requiring only one or two commands to run, these programs have user-friendly interfaces. For example, to get the explicit expression of the 2-soliton of the Korteweg-de Vries equation, one only needs to type in soliton[2] when using the program solipac.m.
Publisher: Springer
ISBN: 0792322924
Category : Mathematics
Languages : en
Pages : 327
Book Description
The aim of this book is to give a self-contained introduction to the mathe matical analysis and physical explanations of some basic nonlinear wave phe nomena. This volume grew out of lecture notes for graduate courf;!es which I gave at the University of Alberta, the University of Saskatchewan, ·and Texas A&M University. As an introduction it is not intended to be exhaustive iQ its choice of material, but rather to convey to interested readers a basic; yet practical, methodology as well as some of the more important results obtained since the 1950's. Although the primary purpose of this volume is to serve as a textbook, it should be useful to anyone who wishes to understand or conduct research into nonlinear waves. Here, for the first time, materials on X-ray crystallography and the forced Korteweg-de Vries equation are incorporated naturally into a textbook on non linear waves. Another characteristic feature of the book is the inclusion of four symbolic calculation programs written in MATHEMATICA. They emphasize outcomes rather than numerical methods and provide certain symbolic and nu merical results related to solitons. Requiring only one or two commands to run, these programs have user-friendly interfaces. For example, to get the explicit expression of the 2-soliton of the Korteweg-de Vries equation, one only needs to type in soliton[2] when using the program solipac.m.
Waves and Structures in Nonlinear Nondispersive Media
Author: Sergey Nikolaevich Gurbatov
Publisher: Springer Science & Business Media
ISBN: 3642236170
Category : Science
Languages : en
Pages : 477
Book Description
"Waves and Structures in Nonlinear Nondispersive Media: General Theory and Applications to Nonlinear Acoustics” is devoted completely to nonlinear structures. The general theory is given here in parallel with mathematical models. Many concrete examples illustrate the general analysis of Part I. Part II is devoted to applications to nonlinear acoustics, including specific nonlinear models and exact solutions, physical mechanisms of nonlinearity, sawtooth-shaped wave propagation, self-action phenomena, nonlinear resonances and engineering application (medicine, nondestructive testing, geophysics, etc.). This book is designed for graduate and postgraduate students studying the theory of nonlinear waves of various physical nature. It may also be useful as a handbook for engineers and researchers who encounter the necessity of taking nonlinear wave effects into account of their work. Dr. Gurbatov S.N. is the head of Department, and Vice Rector for Research of Nizhny Novgorod State University. Dr. Rudenko O.V. is the Full member of Russian Academy of Sciences, the head of Department at Moscow University and Professor at BTH (Sweden). Dr. Saichev A.I. is the Professor at the Faculty of Radiophysics of Nizhny Novgorod State University, Professor of ETH Zürich.
Publisher: Springer Science & Business Media
ISBN: 3642236170
Category : Science
Languages : en
Pages : 477
Book Description
"Waves and Structures in Nonlinear Nondispersive Media: General Theory and Applications to Nonlinear Acoustics” is devoted completely to nonlinear structures. The general theory is given here in parallel with mathematical models. Many concrete examples illustrate the general analysis of Part I. Part II is devoted to applications to nonlinear acoustics, including specific nonlinear models and exact solutions, physical mechanisms of nonlinearity, sawtooth-shaped wave propagation, self-action phenomena, nonlinear resonances and engineering application (medicine, nondestructive testing, geophysics, etc.). This book is designed for graduate and postgraduate students studying the theory of nonlinear waves of various physical nature. It may also be useful as a handbook for engineers and researchers who encounter the necessity of taking nonlinear wave effects into account of their work. Dr. Gurbatov S.N. is the head of Department, and Vice Rector for Research of Nizhny Novgorod State University. Dr. Rudenko O.V. is the Full member of Russian Academy of Sciences, the head of Department at Moscow University and Professor at BTH (Sweden). Dr. Saichev A.I. is the Professor at the Faculty of Radiophysics of Nizhny Novgorod State University, Professor of ETH Zürich.
Linear and Nonlinear Waves
Author: G. B. Whitham
Publisher: John Wiley & Sons
ISBN: 1118031202
Category : Science
Languages : en
Pages : 660
Book Description
Now in an accessible paperback edition, this classic work is just as relevant as when it first appeared in 1974, due to the increased use of nonlinear waves. It covers the behavior of waves in two parts, with the first part addressing hyperbolic waves and the second addressing dispersive waves. The mathematical principles are presented along with examples of specific cases in communications and specific physical fields, including flood waves in rivers, waves in glaciers, traffic flow, sonic booms, blast waves, and ocean waves from storms.
Publisher: John Wiley & Sons
ISBN: 1118031202
Category : Science
Languages : en
Pages : 660
Book Description
Now in an accessible paperback edition, this classic work is just as relevant as when it first appeared in 1974, due to the increased use of nonlinear waves. It covers the behavior of waves in two parts, with the first part addressing hyperbolic waves and the second addressing dispersive waves. The mathematical principles are presented along with examples of specific cases in communications and specific physical fields, including flood waves in rivers, waves in glaciers, traffic flow, sonic booms, blast waves, and ocean waves from storms.
Nonlinear Waves, Solitons and Chaos
Author: Eryk Infeld
Publisher: Cambridge University Press
ISBN: 9780521635578
Category : Mathematics
Languages : en
Pages : 416
Book Description
The second edition of a highly successful book on nonlinear waves, solitons and chaos.
Publisher: Cambridge University Press
ISBN: 9780521635578
Category : Mathematics
Languages : en
Pages : 416
Book Description
The second edition of a highly successful book on nonlinear waves, solitons and chaos.
Dispersive Equations and Nonlinear Waves
Author: Herbert Koch
Publisher: Springer
ISBN: 3034807368
Category : Mathematics
Languages : en
Pages : 310
Book Description
The first part of the book provides an introduction to key tools and techniques in dispersive equations: Strichartz estimates, bilinear estimates, modulation and adapted function spaces, with an application to the generalized Korteweg-de Vries equation and the Kadomtsev-Petviashvili equation. The energy-critical nonlinear Schrödinger equation, global solutions to the defocusing problem, and scattering are the focus of the second part. Using this concrete example, it walks the reader through the induction on energy technique, which has become the essential methodology for tackling large data critical problems. This includes refined/inverse Strichartz estimates, the existence and almost periodicity of minimal blow up solutions, and the development of long-time Strichartz inequalities. The third part describes wave and Schrödinger maps. Starting by building heuristics about multilinear estimates, it provides a detailed outline of this very active area of geometric/dispersive PDE. It focuses on concepts and ideas and should provide graduate students with a stepping stone to this exciting direction of research.
Publisher: Springer
ISBN: 3034807368
Category : Mathematics
Languages : en
Pages : 310
Book Description
The first part of the book provides an introduction to key tools and techniques in dispersive equations: Strichartz estimates, bilinear estimates, modulation and adapted function spaces, with an application to the generalized Korteweg-de Vries equation and the Kadomtsev-Petviashvili equation. The energy-critical nonlinear Schrödinger equation, global solutions to the defocusing problem, and scattering are the focus of the second part. Using this concrete example, it walks the reader through the induction on energy technique, which has become the essential methodology for tackling large data critical problems. This includes refined/inverse Strichartz estimates, the existence and almost periodicity of minimal blow up solutions, and the development of long-time Strichartz inequalities. The third part describes wave and Schrödinger maps. Starting by building heuristics about multilinear estimates, it provides a detailed outline of this very active area of geometric/dispersive PDE. It focuses on concepts and ideas and should provide graduate students with a stepping stone to this exciting direction of research.
Nonlinear Optical Waves
Author: A.I. Maimistov
Publisher: Springer Science & Business Media
ISBN: 9401724482
Category : Science
Languages : en
Pages : 668
Book Description
A non-linear wave is one of the fundamental objects of nature. They are inherent to aerodynamics and hydrodynamics, solid state physics and plasma physics, optics and field theory, chemistry reaction kinetics and population dynamics, nuclear physics and gravity. All non-linear waves can be divided into two parts: dispersive waves and dissipative ones. The history of investigation of these waves has been lasting about two centuries. In 1834 J. S. Russell discovered the extraordinary type of waves without the dispersive broadening. In 1965 N. J. Zabusky and M. D. Kruskal found that the Korteweg-de Vries equation has solutions of the solitary wave form. This solitary wave demonstrates the particle-like properties, i. e. , stability under propagation and the elastic interaction under collision of the solitary waves. These waves were named solitons. In succeeding years there has been a great deal of progress in understanding of soliton nature. Now solitons have become the primary components in many important problems of nonlinear wave dynamics. It should be noted that non-linear optics is the field, where all soliton features are exhibited to a great extent. This book had been designed as the tutorial to the theory of non-linear waves in optics. The first version was projected as the book covering all the problems in this field, both analytical and numerical methods, and results as well. However, it became evident in the process of work that this was not a real task.
Publisher: Springer Science & Business Media
ISBN: 9401724482
Category : Science
Languages : en
Pages : 668
Book Description
A non-linear wave is one of the fundamental objects of nature. They are inherent to aerodynamics and hydrodynamics, solid state physics and plasma physics, optics and field theory, chemistry reaction kinetics and population dynamics, nuclear physics and gravity. All non-linear waves can be divided into two parts: dispersive waves and dissipative ones. The history of investigation of these waves has been lasting about two centuries. In 1834 J. S. Russell discovered the extraordinary type of waves without the dispersive broadening. In 1965 N. J. Zabusky and M. D. Kruskal found that the Korteweg-de Vries equation has solutions of the solitary wave form. This solitary wave demonstrates the particle-like properties, i. e. , stability under propagation and the elastic interaction under collision of the solitary waves. These waves were named solitons. In succeeding years there has been a great deal of progress in understanding of soliton nature. Now solitons have become the primary components in many important problems of nonlinear wave dynamics. It should be noted that non-linear optics is the field, where all soliton features are exhibited to a great extent. This book had been designed as the tutorial to the theory of non-linear waves in optics. The first version was projected as the book covering all the problems in this field, both analytical and numerical methods, and results as well. However, it became evident in the process of work that this was not a real task.
Nonlinear Periodic Waves and Their Modulations
Author: Anatoli? Mikha?lovich Kamchatnov
Publisher: World Scientific
ISBN: 981024407X
Category : Science
Languages : en
Pages : 399
Book Description
Although the mathematical theory of nonlinear waves and solitons has made great progress, its applications to concrete physical problems are rather poor, especially when compared with the classical theory of linear dispersive waves and nonlinear fluid motion. The Whitham method, which describes the combining action of the dispersive and nonlinear effects as modulations of periodic waves, is not widely used by applied mathematicians and physicists, though it provides a direct and natural way to treat various problems in nonlinear wave theory. Therefore it is topical to describe recent developments of the Whitham theory in a clear and simple form suitable for applications in various branches of physics.This book develops the techniques of the theory of nonlinear periodic waves at elementary level and in great pedagogical detail. It provides an introduction to a Whitham's theory of modulation in a form suitable for applications. The exposition is based on a thorough analysis of representative examples taken from fluid mechanics, nonlinear optics and plasma physics rather than on the formulation and study of a mathematical theory. Much attention is paid to physical motivations of the mathematical methods developed in the book. The main applications considered include the theory of collisionless shock waves in dispersive systems and the nonlinear theory of soliton formation in modulationally unstable systems. Exercises are provided to amplify the discussion of important topics such as singular perturbation theory, Riemann invariants, the finite gap integration method, and Whitham equations and their solutions.
Publisher: World Scientific
ISBN: 981024407X
Category : Science
Languages : en
Pages : 399
Book Description
Although the mathematical theory of nonlinear waves and solitons has made great progress, its applications to concrete physical problems are rather poor, especially when compared with the classical theory of linear dispersive waves and nonlinear fluid motion. The Whitham method, which describes the combining action of the dispersive and nonlinear effects as modulations of periodic waves, is not widely used by applied mathematicians and physicists, though it provides a direct and natural way to treat various problems in nonlinear wave theory. Therefore it is topical to describe recent developments of the Whitham theory in a clear and simple form suitable for applications in various branches of physics.This book develops the techniques of the theory of nonlinear periodic waves at elementary level and in great pedagogical detail. It provides an introduction to a Whitham's theory of modulation in a form suitable for applications. The exposition is based on a thorough analysis of representative examples taken from fluid mechanics, nonlinear optics and plasma physics rather than on the formulation and study of a mathematical theory. Much attention is paid to physical motivations of the mathematical methods developed in the book. The main applications considered include the theory of collisionless shock waves in dispersive systems and the nonlinear theory of soliton formation in modulationally unstable systems. Exercises are provided to amplify the discussion of important topics such as singular perturbation theory, Riemann invariants, the finite gap integration method, and Whitham equations and their solutions.
Nonlinear Wave Equations
Author: Walter A. Strauss
Publisher: American Mathematical Soc.
ISBN: 0821807250
Category : Mathematics
Languages : en
Pages : 106
Book Description
The theory of nonlinear wave equations in the absence of shocks began in the 1960s. Despite a great deal of recent activity in this area, some major issues remain unsolved, such as sharp conditions for the global existence of solutions with arbitrary initial data, and the global phase portrait in the presence of periodic solutions and traveling waves. This book, based on lectures presented by the author at George Mason University in January 1989, seeks to present the sharpest results to date in this area. The author surveys the fundamental qualitative properties of the solutions of nonlinear wave equations in the absence of boundaries and shocks. These properties include the existence and regularity of global solutions, strong and weak singularities, asymptotic properties, scattering theory and stability of solitary waves. Wave equations of hyperbolic, Schrodinger, and KdV type are discussed, as well as the Yang-Mills and the Vlasov-Maxwell equations. The book offers readers a broad overview of the field and an understanding of the most recent developments, as well as the status of some important unsolved problems. Intended for mathematicians and physicists interested in nonlinear waves, this book would be suitable as the basis for an advanced graduate-level course.
Publisher: American Mathematical Soc.
ISBN: 0821807250
Category : Mathematics
Languages : en
Pages : 106
Book Description
The theory of nonlinear wave equations in the absence of shocks began in the 1960s. Despite a great deal of recent activity in this area, some major issues remain unsolved, such as sharp conditions for the global existence of solutions with arbitrary initial data, and the global phase portrait in the presence of periodic solutions and traveling waves. This book, based on lectures presented by the author at George Mason University in January 1989, seeks to present the sharpest results to date in this area. The author surveys the fundamental qualitative properties of the solutions of nonlinear wave equations in the absence of boundaries and shocks. These properties include the existence and regularity of global solutions, strong and weak singularities, asymptotic properties, scattering theory and stability of solitary waves. Wave equations of hyperbolic, Schrodinger, and KdV type are discussed, as well as the Yang-Mills and the Vlasov-Maxwell equations. The book offers readers a broad overview of the field and an understanding of the most recent developments, as well as the status of some important unsolved problems. Intended for mathematicians and physicists interested in nonlinear waves, this book would be suitable as the basis for an advanced graduate-level course.
Nonlinear Waves in Integrable and Non-integrable Systems
Author: Jianke Yang
Publisher: SIAM
ISBN: 0898717051
Category : Science
Languages : en
Pages : 452
Book Description
Nonlinear Waves in Integrable and Nonintegrable Systems presents cutting-edge developments in the theory and experiments of nonlinear waves. Its comprehensive coverage of analytical and numerical methods for nonintegrable systems is the first of its kind. This book is intended for researchers and graduate students working in applied mathematics and various physical subjects where nonlinear wave phenomena arise (such as nonlinear optics, Bose-Einstein condensates, and fluid dynamics).
Publisher: SIAM
ISBN: 0898717051
Category : Science
Languages : en
Pages : 452
Book Description
Nonlinear Waves in Integrable and Nonintegrable Systems presents cutting-edge developments in the theory and experiments of nonlinear waves. Its comprehensive coverage of analytical and numerical methods for nonintegrable systems is the first of its kind. This book is intended for researchers and graduate students working in applied mathematics and various physical subjects where nonlinear wave phenomena arise (such as nonlinear optics, Bose-Einstein condensates, and fluid dynamics).
Nonlinear Waves in Waveguides
Author: Sergei B. Leble
Publisher: Springer Science & Business Media
ISBN: 3642754201
Category : Science
Languages : en
Pages : 174
Book Description
S.B. Leble's book deals with nonlinear waves and their propagation in metallic and dielectric waveguides and media with stratification. The underlying nonlinear evolution equations (NEEs) are derived giving also their solutions for specific situations. The reader will find new elements to the traditional approach. Various dispersion and relaxation laws for different guides are considered as well as the explicit form of projection operators, NEEs, quasi-solitons and of Darboux transforms. Special points relate to: 1. the development of a universal asymptotic method of deriving NEEs for guide propagation; 2. applications to the cases of stratified liquids, gases, solids and plasmas with various nonlinearities and dispersion laws; 3. connections between the basic problem and soliton- like solutions of the corresponding NEEs; 4. discussion of details of simple solutions in higher- order nonsingular perturbation theory.
Publisher: Springer Science & Business Media
ISBN: 3642754201
Category : Science
Languages : en
Pages : 174
Book Description
S.B. Leble's book deals with nonlinear waves and their propagation in metallic and dielectric waveguides and media with stratification. The underlying nonlinear evolution equations (NEEs) are derived giving also their solutions for specific situations. The reader will find new elements to the traditional approach. Various dispersion and relaxation laws for different guides are considered as well as the explicit form of projection operators, NEEs, quasi-solitons and of Darboux transforms. Special points relate to: 1. the development of a universal asymptotic method of deriving NEEs for guide propagation; 2. applications to the cases of stratified liquids, gases, solids and plasmas with various nonlinearities and dispersion laws; 3. connections between the basic problem and soliton- like solutions of the corresponding NEEs; 4. discussion of details of simple solutions in higher- order nonsingular perturbation theory.