Author: G. B. Whitham
Publisher: John Wiley & Sons
ISBN: 1118031202
Category : Science
Languages : en
Pages : 660
Book Description
Now in an accessible paperback edition, this classic work is just as relevant as when it first appeared in 1974, due to the increased use of nonlinear waves. It covers the behavior of waves in two parts, with the first part addressing hyperbolic waves and the second addressing dispersive waves. The mathematical principles are presented along with examples of specific cases in communications and specific physical fields, including flood waves in rivers, waves in glaciers, traffic flow, sonic booms, blast waves, and ocean waves from storms.
Linear and Nonlinear Waves
Author: G. B. Whitham
Publisher: John Wiley & Sons
ISBN: 1118031202
Category : Science
Languages : en
Pages : 660
Book Description
Now in an accessible paperback edition, this classic work is just as relevant as when it first appeared in 1974, due to the increased use of nonlinear waves. It covers the behavior of waves in two parts, with the first part addressing hyperbolic waves and the second addressing dispersive waves. The mathematical principles are presented along with examples of specific cases in communications and specific physical fields, including flood waves in rivers, waves in glaciers, traffic flow, sonic booms, blast waves, and ocean waves from storms.
Publisher: John Wiley & Sons
ISBN: 1118031202
Category : Science
Languages : en
Pages : 660
Book Description
Now in an accessible paperback edition, this classic work is just as relevant as when it first appeared in 1974, due to the increased use of nonlinear waves. It covers the behavior of waves in two parts, with the first part addressing hyperbolic waves and the second addressing dispersive waves. The mathematical principles are presented along with examples of specific cases in communications and specific physical fields, including flood waves in rivers, waves in glaciers, traffic flow, sonic booms, blast waves, and ocean waves from storms.
Nonlinear Waves, Solitons and Chaos
Author: Eryk Infeld
Publisher: Cambridge University Press
ISBN: 9780521635578
Category : Business & Economics
Languages : en
Pages : 416
Book Description
This revised and updated second edition of a highly successful book is the only text at this level to embrace a universal approach to three major developments in classical physics; namely nonlinear waves, solitons and chaos. The authors now include new material on biology and laser theory, and go on to discuss important recent developments such as soliton metamorphosis. A comprehensive treatment of basic plasma and fluid configurations and instabilities is followed by a study of the relevant nonlinear structures. Each chapter concludes with a set of problems. This text will be particularly valuable for students taking courses in nonlinear aspects of physics. In general, it will be of value to final year undergraduates and beginning graduate students studying fluid dynamics, plasma physics and applied mathematics.
Publisher: Cambridge University Press
ISBN: 9780521635578
Category : Business & Economics
Languages : en
Pages : 416
Book Description
This revised and updated second edition of a highly successful book is the only text at this level to embrace a universal approach to three major developments in classical physics; namely nonlinear waves, solitons and chaos. The authors now include new material on biology and laser theory, and go on to discuss important recent developments such as soliton metamorphosis. A comprehensive treatment of basic plasma and fluid configurations and instabilities is followed by a study of the relevant nonlinear structures. Each chapter concludes with a set of problems. This text will be particularly valuable for students taking courses in nonlinear aspects of physics. In general, it will be of value to final year undergraduates and beginning graduate students studying fluid dynamics, plasma physics and applied mathematics.
A Course on Nonlinear Waves
Author: S.S. Shen
Publisher: Springer Science & Business Media
ISBN: 9401121028
Category : Mathematics
Languages : en
Pages : 335
Book Description
The aim of this book is to give a self-contained introduction to the mathe matical analysis and physical explanations of some basic nonlinear wave phe nomena. This volume grew out of lecture notes for graduate courf;!es which I gave at the University of Alberta, the University of Saskatchewan, ·and Texas A&M University. As an introduction it is not intended to be exhaustive iQ its choice of material, but rather to convey to interested readers a basic; yet practical, methodology as well as some of the more important results obtained since the 1950's. Although the primary purpose of this volume is to serve as a textbook, it should be useful to anyone who wishes to understand or conduct research into nonlinear waves. Here, for the first time, materials on X-ray crystallography and the forced Korteweg-de Vries equation are incorporated naturally into a textbook on non linear waves. Another characteristic feature of the book is the inclusion of four symbolic calculation programs written in MATHEMATICA. They emphasize outcomes rather than numerical methods and provide certain symbolic and nu merical results related to solitons. Requiring only one or two commands to run, these programs have user-friendly interfaces. For example, to get the explicit expression of the 2-soliton of the Korteweg-de Vries equation, one only needs to type in soliton[2] when using the program solipac.m.
Publisher: Springer Science & Business Media
ISBN: 9401121028
Category : Mathematics
Languages : en
Pages : 335
Book Description
The aim of this book is to give a self-contained introduction to the mathe matical analysis and physical explanations of some basic nonlinear wave phe nomena. This volume grew out of lecture notes for graduate courf;!es which I gave at the University of Alberta, the University of Saskatchewan, ·and Texas A&M University. As an introduction it is not intended to be exhaustive iQ its choice of material, but rather to convey to interested readers a basic; yet practical, methodology as well as some of the more important results obtained since the 1950's. Although the primary purpose of this volume is to serve as a textbook, it should be useful to anyone who wishes to understand or conduct research into nonlinear waves. Here, for the first time, materials on X-ray crystallography and the forced Korteweg-de Vries equation are incorporated naturally into a textbook on non linear waves. Another characteristic feature of the book is the inclusion of four symbolic calculation programs written in MATHEMATICA. They emphasize outcomes rather than numerical methods and provide certain symbolic and nu merical results related to solitons. Requiring only one or two commands to run, these programs have user-friendly interfaces. For example, to get the explicit expression of the 2-soliton of the Korteweg-de Vries equation, one only needs to type in soliton[2] when using the program solipac.m.
Nonlinear Waves in Integrable and Non-integrable Systems
Author: Jianke Yang
Publisher: SIAM
ISBN: 0898717051
Category : Science
Languages : en
Pages : 452
Book Description
Nonlinear Waves in Integrable and Nonintegrable Systems presents cutting-edge developments in the theory and experiments of nonlinear waves. Its comprehensive coverage of analytical and numerical methods for nonintegrable systems is the first of its kind. This book is intended for researchers and graduate students working in applied mathematics and various physical subjects where nonlinear wave phenomena arise (such as nonlinear optics, Bose-Einstein condensates, and fluid dynamics).
Publisher: SIAM
ISBN: 0898717051
Category : Science
Languages : en
Pages : 452
Book Description
Nonlinear Waves in Integrable and Nonintegrable Systems presents cutting-edge developments in the theory and experiments of nonlinear waves. Its comprehensive coverage of analytical and numerical methods for nonintegrable systems is the first of its kind. This book is intended for researchers and graduate students working in applied mathematics and various physical subjects where nonlinear wave phenomena arise (such as nonlinear optics, Bose-Einstein condensates, and fluid dynamics).
Waves and Structures in Nonlinear Nondispersive Media
Author: Sergey Nikolaevich Gurbatov
Publisher: Springer Science & Business Media
ISBN: 3642236170
Category : Science
Languages : en
Pages : 477
Book Description
"Waves and Structures in Nonlinear Nondispersive Media: General Theory and Applications to Nonlinear Acoustics” is devoted completely to nonlinear structures. The general theory is given here in parallel with mathematical models. Many concrete examples illustrate the general analysis of Part I. Part II is devoted to applications to nonlinear acoustics, including specific nonlinear models and exact solutions, physical mechanisms of nonlinearity, sawtooth-shaped wave propagation, self-action phenomena, nonlinear resonances and engineering application (medicine, nondestructive testing, geophysics, etc.). This book is designed for graduate and postgraduate students studying the theory of nonlinear waves of various physical nature. It may also be useful as a handbook for engineers and researchers who encounter the necessity of taking nonlinear wave effects into account of their work. Dr. Gurbatov S.N. is the head of Department, and Vice Rector for Research of Nizhny Novgorod State University. Dr. Rudenko O.V. is the Full member of Russian Academy of Sciences, the head of Department at Moscow University and Professor at BTH (Sweden). Dr. Saichev A.I. is the Professor at the Faculty of Radiophysics of Nizhny Novgorod State University, Professor of ETH Zürich.
Publisher: Springer Science & Business Media
ISBN: 3642236170
Category : Science
Languages : en
Pages : 477
Book Description
"Waves and Structures in Nonlinear Nondispersive Media: General Theory and Applications to Nonlinear Acoustics” is devoted completely to nonlinear structures. The general theory is given here in parallel with mathematical models. Many concrete examples illustrate the general analysis of Part I. Part II is devoted to applications to nonlinear acoustics, including specific nonlinear models and exact solutions, physical mechanisms of nonlinearity, sawtooth-shaped wave propagation, self-action phenomena, nonlinear resonances and engineering application (medicine, nondestructive testing, geophysics, etc.). This book is designed for graduate and postgraduate students studying the theory of nonlinear waves of various physical nature. It may also be useful as a handbook for engineers and researchers who encounter the necessity of taking nonlinear wave effects into account of their work. Dr. Gurbatov S.N. is the head of Department, and Vice Rector for Research of Nizhny Novgorod State University. Dr. Rudenko O.V. is the Full member of Russian Academy of Sciences, the head of Department at Moscow University and Professor at BTH (Sweden). Dr. Saichev A.I. is the Professor at the Faculty of Radiophysics of Nizhny Novgorod State University, Professor of ETH Zürich.
Nonlinear Ocean Waves and the Inverse Scattering Transform
Author: Alfred Osborne
Publisher: Academic Press
ISBN: 0080925103
Category : Science
Languages : en
Pages : 977
Book Description
For more than 200 years, the Fourier Transform has been one of the most important mathematical tools for understanding the dynamics of linear wave trains. Nonlinear Ocean Waves and the Inverse Scattering Transform presents the development of the nonlinear Fourier analysis of measured space and time series, which can be found in a wide variety of physical settings including surface water waves, internal waves, and equatorial Rossby waves. This revolutionary development will allow hyperfast numerical modelling of nonlinear waves, greatly advancing our understanding of oceanic surface and internal waves. Nonlinear Fourier analysis is based upon a generalization of linear Fourier analysis referred to as the inverse scattering transform, the fundamental building block of which is a generalized Fourier series called the Riemann theta function. Elucidating the art and science of implementing these functions in the context of physical and time series analysis is the goal of this book. - Presents techniques and methods of the inverse scattering transform for data analysis - Geared toward both the introductory and advanced reader venturing further into mathematical and numerical analysis - Suitable for classroom teaching as well as research
Publisher: Academic Press
ISBN: 0080925103
Category : Science
Languages : en
Pages : 977
Book Description
For more than 200 years, the Fourier Transform has been one of the most important mathematical tools for understanding the dynamics of linear wave trains. Nonlinear Ocean Waves and the Inverse Scattering Transform presents the development of the nonlinear Fourier analysis of measured space and time series, which can be found in a wide variety of physical settings including surface water waves, internal waves, and equatorial Rossby waves. This revolutionary development will allow hyperfast numerical modelling of nonlinear waves, greatly advancing our understanding of oceanic surface and internal waves. Nonlinear Fourier analysis is based upon a generalization of linear Fourier analysis referred to as the inverse scattering transform, the fundamental building block of which is a generalized Fourier series called the Riemann theta function. Elucidating the art and science of implementing these functions in the context of physical and time series analysis is the goal of this book. - Presents techniques and methods of the inverse scattering transform for data analysis - Geared toward both the introductory and advanced reader venturing further into mathematical and numerical analysis - Suitable for classroom teaching as well as research
Nonlinear Wave Dynamics
Author: J. Engelbrecht
Publisher: Springer Science & Business Media
ISBN: 9401588910
Category : Technology & Engineering
Languages : en
Pages : 197
Book Description
At the end of the twentieth century, nonlinear dynamics turned out to be one of the most challenging and stimulating ideas. Notions like bifurcations, attractors, chaos, fractals, etc. have proved to be useful in explaining the world around us, be it natural or artificial. However, much of our everyday understanding is still based on linearity, i. e. on the additivity and the proportionality. The larger the excitation, the larger the response-this seems to be carved in a stone tablet. The real world is not always reacting this way and the additivity is simply lost. The most convenient way to describe such a phenomenon is to use a mathematical term-nonlinearity. The importance of this notion, i. e. the importance of being nonlinear is nowadays more and more accepted not only by the scientific community but also globally. The recent success of nonlinear dynamics is heavily biased towards temporal characterization widely using nonlinear ordinary differential equations. Nonlinear spatio-temporal processes, i. e. nonlinear waves are seemingly much more complicated because they are described by nonlinear partial differential equations. The richness of the world may lead in this case to coherent structures like solitons, kinks, breathers, etc. which have been studied in detail. Their chaotic counterparts, however, are not so explicitly analysed yet. The wavebearing physical systems cover a wide range of phenomena involving physics, solid mechanics, hydrodynamics, biological structures, chemistry, etc.
Publisher: Springer Science & Business Media
ISBN: 9401588910
Category : Technology & Engineering
Languages : en
Pages : 197
Book Description
At the end of the twentieth century, nonlinear dynamics turned out to be one of the most challenging and stimulating ideas. Notions like bifurcations, attractors, chaos, fractals, etc. have proved to be useful in explaining the world around us, be it natural or artificial. However, much of our everyday understanding is still based on linearity, i. e. on the additivity and the proportionality. The larger the excitation, the larger the response-this seems to be carved in a stone tablet. The real world is not always reacting this way and the additivity is simply lost. The most convenient way to describe such a phenomenon is to use a mathematical term-nonlinearity. The importance of this notion, i. e. the importance of being nonlinear is nowadays more and more accepted not only by the scientific community but also globally. The recent success of nonlinear dynamics is heavily biased towards temporal characterization widely using nonlinear ordinary differential equations. Nonlinear spatio-temporal processes, i. e. nonlinear waves are seemingly much more complicated because they are described by nonlinear partial differential equations. The richness of the world may lead in this case to coherent structures like solitons, kinks, breathers, etc. which have been studied in detail. Their chaotic counterparts, however, are not so explicitly analysed yet. The wavebearing physical systems cover a wide range of phenomena involving physics, solid mechanics, hydrodynamics, biological structures, chemistry, etc.
Nonlinear Random Waves
Author: Vladimir V Konotop
Publisher: World Scientific
ISBN: 9814502154
Category : Science
Languages : en
Pages : 309
Book Description
This book is mainly devoted to the dynamics of the one-dimensional nonlinear stochastic waves. It contains a description of the basic mathematical tools as well as the latest results in the following fields: exactly integrable nonlinear stochastic equations, dynamics of the nonlinear waves in random media, evolution of the random waves in nonlinear media and the basic concepts of the numerical simulations in nonlinear random wave dynamics. A brief outline of the localization phenomenon in the nonlinear medium is also given. The approach is interdisciplinary describing the general methods with application to specific examples. The results presented may be useful for those who work in the areas of solid state physics, hydrodynamics, nonlinear optics, plasma physics, mathematical models of micromolecules and biological structures, …etc. Since many results are based on the inverse scattering technique, perturbation theory for solitons and the methods of the statistical radiophysics, the terminology of the respective fields is used.
Publisher: World Scientific
ISBN: 9814502154
Category : Science
Languages : en
Pages : 309
Book Description
This book is mainly devoted to the dynamics of the one-dimensional nonlinear stochastic waves. It contains a description of the basic mathematical tools as well as the latest results in the following fields: exactly integrable nonlinear stochastic equations, dynamics of the nonlinear waves in random media, evolution of the random waves in nonlinear media and the basic concepts of the numerical simulations in nonlinear random wave dynamics. A brief outline of the localization phenomenon in the nonlinear medium is also given. The approach is interdisciplinary describing the general methods with application to specific examples. The results presented may be useful for those who work in the areas of solid state physics, hydrodynamics, nonlinear optics, plasma physics, mathematical models of micromolecules and biological structures, …etc. Since many results are based on the inverse scattering technique, perturbation theory for solitons and the methods of the statistical radiophysics, the terminology of the respective fields is used.
Nonlinear Waves
Author: Lokenath Debnath
Publisher: CUP Archive
ISBN: 9780521254687
Category : Mathematics
Languages : en
Pages : 376
Book Description
The outcome of a conference held in East Carolina University in June 1982, this book provides an account of developments in the theory and application of nonlinear waves in both fluids and plasmas. Twenty-two contributors from eight countries here cover all the main fields of research, including nonlinear water waves, K-dV equations, solitions and inverse scattering transforms, stability of solitary waves, resonant wave interactions, nonlinear evolution equations, nonlinear wave phenomena in plasmas, recurrence phenomena in nonlinear wave systems, and the structure and dynamics of envelope solitions in plasmas.
Publisher: CUP Archive
ISBN: 9780521254687
Category : Mathematics
Languages : en
Pages : 376
Book Description
The outcome of a conference held in East Carolina University in June 1982, this book provides an account of developments in the theory and application of nonlinear waves in both fluids and plasmas. Twenty-two contributors from eight countries here cover all the main fields of research, including nonlinear water waves, K-dV equations, solitions and inverse scattering transforms, stability of solitary waves, resonant wave interactions, nonlinear evolution equations, nonlinear wave phenomena in plasmas, recurrence phenomena in nonlinear wave systems, and the structure and dynamics of envelope solitions in plasmas.
Tsunami and Nonlinear Waves
Author: Anjan Kundu
Publisher: Springer Science & Business Media
ISBN: 3540712569
Category : Science
Languages : en
Pages : 319
Book Description
The need for tsunami research and analysis has grown dramatically following the devastating tsunami of December 2004, which affected Southern Asia. This book pursues a detailed theoretical and mathematical analysis of the fundamentals of tsunamis, especially the evolution and dynamics of tsunamis and other great waves. Of course, it includes specific measurement results from the 2004 tsunami, but the emphasis is on the nature of the waves themselves and their links to nonlinear phenomena.
Publisher: Springer Science & Business Media
ISBN: 3540712569
Category : Science
Languages : en
Pages : 319
Book Description
The need for tsunami research and analysis has grown dramatically following the devastating tsunami of December 2004, which affected Southern Asia. This book pursues a detailed theoretical and mathematical analysis of the fundamentals of tsunamis, especially the evolution and dynamics of tsunamis and other great waves. Of course, it includes specific measurement results from the 2004 tsunami, but the emphasis is on the nature of the waves themselves and their links to nonlinear phenomena.