Nonlinear Subgrid Finite Element Models for Low Mach Number Flows Coupled with Radiative Heat Transfer

Nonlinear Subgrid Finite Element Models for Low Mach Number Flows Coupled with Radiative Heat Transfer PDF Author: Matías Avila
Publisher:
ISBN:
Category :
Languages : en
Pages : 208

Get Book Here

Book Description
The general description of a fluid flow involves the solution of the compressible Navier-Stokes equations, a very complex problem whose mathematical structure is not well understood. It is widely accepted that these equations provide an accurate description of any problem in fluid mechanics which may present many different nonlinear physical mechanisms. Depending on the physics of the problem under consideration, different simplified models neglecting some physical mechanisms can be derived from asymptotic analysis. On the other hand, radiative heat transfer can strongly interact with convection in high temperature flows, and neglecting its effects may have significant consequences in the overall predictions. Problems as fire scenarios emphasized the need for an evaluation of the effect of radiative heat transfer. This work is directed to strongly thermally coupled low Mach number flows with radiative heat transfer. The complexity of these mathematical problem makes their numerical solution very difficult. Despite the important difference in the treatment of the incompressibility, the low Mach number equations present the same mathematical structure as the incompressible Navier-Stokes equations, in the sense that the mechanical pressure is determined from the mass conservation constraint. Consequently the same type of numerical instabilities can be found, namely, the problem of compatibility conditions between the velocity and pressure finite element spaces, and the instabilities due to convection dominated flows. These instabilities can be avoided by the use of stabilization techniques. Many stabilization techniques used nowadays are based on the variational multiscale method, in which a decomposition of the approximating space into a coarse scale resolvable part and a fine scale subgrid part is performed. The modeling of the subgrid scale and its influence leads to a modified coarse scale problem providing stability. The quality of the final approximation (accuracy, efficiency) depends on the particular model. The extension of these techniques to nonlinear and coupled problems is presented. The distinctive features of our approach are to consider the subscales as transient and to keep the scale splitting in all the nonlinear terms appearing in the finite element equations and in the subgrid scale model. The first ingredient permits to obtain an improved time discretization scheme(higher accuracy, better stability). The second ingredient permits to prove global conservation properties, being also responsible of the higher accuracy of the method. This ingredient is intimately related to the problem of thermal turbulence modeling from a strictly numerical point of view. The capability for the simulation of turbulent flows is a measure of the ability of modeling the effect of the subgrid flow structures over the coarser ones. The performance of the model in predicting the behavior of turbulent flows is demonstrated. The radiation transport equation has been also approximated within the variational multiscale framework, the design and analysis of stabilized finite element methods is presented.

Nonlinear Subgrid Finite Element Models for Low Mach Number Flows Coupled with Radiative Heat Transfer

Nonlinear Subgrid Finite Element Models for Low Mach Number Flows Coupled with Radiative Heat Transfer PDF Author: Matías Avila
Publisher:
ISBN:
Category :
Languages : en
Pages : 208

Get Book Here

Book Description
The general description of a fluid flow involves the solution of the compressible Navier-Stokes equations, a very complex problem whose mathematical structure is not well understood. It is widely accepted that these equations provide an accurate description of any problem in fluid mechanics which may present many different nonlinear physical mechanisms. Depending on the physics of the problem under consideration, different simplified models neglecting some physical mechanisms can be derived from asymptotic analysis. On the other hand, radiative heat transfer can strongly interact with convection in high temperature flows, and neglecting its effects may have significant consequences in the overall predictions. Problems as fire scenarios emphasized the need for an evaluation of the effect of radiative heat transfer. This work is directed to strongly thermally coupled low Mach number flows with radiative heat transfer. The complexity of these mathematical problem makes their numerical solution very difficult. Despite the important difference in the treatment of the incompressibility, the low Mach number equations present the same mathematical structure as the incompressible Navier-Stokes equations, in the sense that the mechanical pressure is determined from the mass conservation constraint. Consequently the same type of numerical instabilities can be found, namely, the problem of compatibility conditions between the velocity and pressure finite element spaces, and the instabilities due to convection dominated flows. These instabilities can be avoided by the use of stabilization techniques. Many stabilization techniques used nowadays are based on the variational multiscale method, in which a decomposition of the approximating space into a coarse scale resolvable part and a fine scale subgrid part is performed. The modeling of the subgrid scale and its influence leads to a modified coarse scale problem providing stability. The quality of the final approximation (accuracy, efficiency) depends on the particular model. The extension of these techniques to nonlinear and coupled problems is presented. The distinctive features of our approach are to consider the subscales as transient and to keep the scale splitting in all the nonlinear terms appearing in the finite element equations and in the subgrid scale model. The first ingredient permits to obtain an improved time discretization scheme(higher accuracy, better stability). The second ingredient permits to prove global conservation properties, being also responsible of the higher accuracy of the method. This ingredient is intimately related to the problem of thermal turbulence modeling from a strictly numerical point of view. The capability for the simulation of turbulent flows is a measure of the ability of modeling the effect of the subgrid flow structures over the coarser ones. The performance of the model in predicting the behavior of turbulent flows is demonstrated. The radiation transport equation has been also approximated within the variational multiscale framework, the design and analysis of stabilized finite element methods is presented.

Nonlinear Subgrid Finite Element Models for Low March Number Flows Coupled with Radiative Heat Transfer

Nonlinear Subgrid Finite Element Models for Low March Number Flows Coupled with Radiative Heat Transfer PDF Author: Matías Avila
Publisher:
ISBN:
Category :
Languages : en
Pages : 198

Get Book Here

Book Description


Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 702

Get Book Here

Book Description


International Aerospace Abstracts

International Aerospace Abstracts PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1016

Get Book Here

Book Description


Applied Mechanics Reviews

Applied Mechanics Reviews PDF Author:
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 348

Get Book Here

Book Description


AIAA Journal

AIAA Journal PDF Author: American Institute of Aeronautics and Astronautics
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 954

Get Book Here

Book Description


Pof 2000

Pof 2000 PDF Author:
Publisher: Information Gatekeepers Inc
ISBN:
Category :
Languages : en
Pages : 80

Get Book Here

Book Description


Radiative Heat Transfer in Turbulent Combustion Systems

Radiative Heat Transfer in Turbulent Combustion Systems PDF Author: Michael F. Modest
Publisher: Springer
ISBN: 3319272918
Category : Science
Languages : en
Pages : 167

Get Book Here

Book Description
This introduction reviews why combustion and radiation are important, as well as the technical challenges posed by radiation. Emphasis is on interactions among turbulence, chemistry and radiation (turbulence-chemistry-radiation interactions – TCRI) in Reynolds-averaged and large-eddy simulations. Subsequent chapters cover: chemically reacting turbulent flows; radiation properties, Reynolds transport equation (RTE) solution methods, and TCRI; radiation effects in laminar flames; TCRI in turbulent flames; and high-pressure combustion systems. This Brief presents integrated approach that includes radiation at the outset, rather than as an afterthought. It stands as the most recent developments in physical modeling, numerical algorithms, and applications collected in one monograph.

Computational Heat Transfer

Computational Heat Transfer PDF Author: Yogesh Jaluria
Publisher: Routledge
ISBN: 1351458868
Category : Science
Languages : en
Pages : 568

Get Book Here

Book Description
This new edition updated the material by expanding coverage of certain topics, adding new examples and problems, removing outdated material, and adding a computer disk, which will be included with each book. Professor Jaluria and Torrance have structured a text addressing both finite difference and finite element methods, comparing a number of applicable methods.

Modern Methods in Analytical Acoustics

Modern Methods in Analytical Acoustics PDF Author: D.G. Crighton
Publisher: Springer Science & Business Media
ISBN: 1447103998
Category : Science
Languages : en
Pages : 747

Get Book Here

Book Description
Modern Methods in Analytical Acoustics considers topics fundamental to the understanding of noise, vibration and fluid mechanisms. The series of lectures on which this material is based began by some twenty five years ago and has been developed and expanded ever since. Acknowledged experts in the field have given this course many times in Europe and the USA. Although the scope of the course has widened considerably, the primary aim of teaching analytical techniques of acoustics alongside specific areas of wave motion and unsteady fluid mechanisms remains. The distinguished authors of this volume are drawn from Departments of Acoustics, Engineering of Applied Mathematics in Berlin, Cambridge and London. Their intention is to reach a wider audience of all those concerned with acoustic analysis than has been able to attend the course.