Nonlinear Stochastic Systems In Physics And Mechanics

Nonlinear Stochastic Systems In Physics And Mechanics PDF Author: Nicola Bellomo
Publisher: World Scientific
ISBN: 9813104295
Category : Science
Languages : en
Pages : 260

Get Book Here

Book Description
This book presents the conceptional line which goes from the observation of physical systems to their modeling and analysis by ordinary differential nonlinear stochastic equations.First, the problems of the mathematical modeling of physical systems are developed. These mathematical models are then classified in terms of ordinary differential stochastic equations from which both qualitative and quantitative results are developed.Each one of the various subjects are methods dealt with ends with an application in mathematical physics or in nonlinear mechanics.

Nonlinear Stochastic Systems in Physics and Mechanics

Nonlinear Stochastic Systems in Physics and Mechanics PDF Author: N. Bellomo
Publisher:
ISBN:
Category :
Languages : en
Pages : 244

Get Book Here

Book Description


Statistical Thermodynamics And Stochastic Theory Of Nonequilibrium Systems

Statistical Thermodynamics And Stochastic Theory Of Nonequilibrium Systems PDF Author: Werner Ebeling
Publisher: World Scientific Publishing Company
ISBN: 9813104635
Category : Science
Languages : en
Pages : 342

Get Book Here

Book Description
This book presents both the fundamentals and the major research topics in statistical physics of systems out of equilibrium. It summarizes different approaches to describe such systems on the thermodynamic and stochastic levels, and discusses a variety of areas including reactions, anomalous kinetics, and the behavior of self-propelling particles.

Nonlinear Stochastic Systems Theory and Applications to Physics

Nonlinear Stochastic Systems Theory and Applications to Physics PDF Author: G. Adomian
Publisher: Springer Science & Business Media
ISBN: 902772525X
Category : Mathematics
Languages : en
Pages : 248

Get Book Here

Book Description
Approach your problems from the right end and begin with the answers. Then one day, perhaps you will find the final answer. "The Hermit Clad In Crane Feathers" In R. van Gullk's The Chinese Haze Hurders. It Isn't that they can't see the solution. It IS that they can't see the problem. G. K. Chesterton. The Scandal of Father Brown. "The POint of a Pin." Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of k now ledge of m athemat i cs and re I ated fie I ds does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, COding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And In addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely Integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the eXisting classificatIOn schemes.

Uncertainty Modeling in Vibration, Control and Fuzzy Analysis of Structural Systems

Uncertainty Modeling in Vibration, Control and Fuzzy Analysis of Structural Systems PDF Author: Bilal M. Ayyub
Publisher: World Scientific
ISBN: 9810231342
Category : Technology & Engineering
Languages : en
Pages : 382

Get Book Here

Book Description
This book gives an overview of the current state of uncertainty modeling in vibration, control, and fuzzy analysis of structural and mechanical systems. It is a coherent compendium written by leading experts and offers the reader a sampling of exciting research areas in several fast-growing branches in this field. Uncertainty modeling and analysis are becoming an integral part of system definition and modeling in many fields. The book consists of ten chapters that report the work of researchers, scientists and engineers on theoretical developments and diversified applications in engineering systems. They deal with modeling for vibration, control, and fuzzy analysis of structural and mechanical systems under uncertain conditions. The book designed for readers who are familiar with the fundamentals and wish to study a particular topic or use the book as an authoritative reference. It gives readers a sophisticated toolbox for tackling modeling problems in mechanical and structural systems in real-world situations. The book is part of a series on Stability, Vibration and Control of Structures, and provides vital information in these areas.

Nonlinear Dynamics of Chaotic and Stochastic Systems

Nonlinear Dynamics of Chaotic and Stochastic Systems PDF Author: Vadim S. Anishchenko
Publisher: Springer Science & Business Media
ISBN: 3540381686
Category : Science
Languages : en
Pages : 463

Get Book Here

Book Description
We present an improved and enlarged version of our book Nonlinear - namics of Chaotic and Stochastic Systems published by Springer in 2002. Basically, the new edition of the book corresponds to its ?rst version. While preparingthiseditionwemadesomeclari?cationsinseveralsectionsandalso corrected the misprints noticed in some formulas. Besides, three new sections have been added to Chapter 2. They are “Statistical Properties of Dynamical Chaos,” “E?ects of Synchronization in Extended Self-Sustained Oscillatory Systems,” and “Synchronization in Living Systems.” The sections indicated re?ect the most interesting results obtained by the authors after publication of the ?rst edition. We hope that the new edition of the book will be of great interest for a widesectionofreaderswhoarealreadyspecialistsorthosewhoarebeginning research in the ?elds of nonlinear oscillation and wave theory, dynamical chaos, synchronization, and stochastic process theory. Saratov, Berlin, and St. Louis V.S. Anishchenko November 2006 A.B. Neiman T.E. Vadiavasova V.V. Astakhov L. Schimansky-Geier Preface to the First Edition Thisbookisdevotedtotheclassicalbackgroundandtocontemporaryresults on nonlinear dynamics of deterministic and stochastic systems. Considerable attentionisgiventothee?ectsofnoiseonvariousregimesofdynamicsystems with noise-induced order. On the one hand, there exists a rich literature of excellent books on n- linear dynamics and chaos; on the other hand, there are many marvelous monographs and textbooks on the statistical physics of far-from-equilibrium andstochasticprocesses.Thisbookisanattempttocombinetheapproachof nonlinear dynamics based on the deterministic evolution equations with the approach of statistical physics based on stochastic or kinetic equations. One of our main aims is to show the important role of noise in the organization and properties of dynamic regimes of nonlinear dissipative systems.

Regular and Stochastic Motion

Regular and Stochastic Motion PDF Author: A. J. Lichtenberg
Publisher: Springer Science & Business Media
ISBN: 1475742576
Category : Mathematics
Languages : en
Pages : 518

Get Book Here

Book Description
This book treats stochastic motion in nonlinear oscillator systems. It describes a rapidly growing field of nonlinear mechanics with applications to a number of areas in science and engineering, including astronomy, plasma physics, statistical mechanics and hydrodynamics. The main em phasis is on intrinsic stochasticity in Hamiltonian systems, where the stochastic motion is generated by the dynamics itself and not by external noise. However, the effects of noise in modifying the intrinsic motion are also considered. A thorough introduction to chaotic motion in dissipative systems is given in the final chapter. Although the roots of the field are old, dating back to the last century when Poincare and others attempted to formulate a theory for nonlinear perturbations of planetary orbits, it was new mathematical results obtained in the 1960's, together with computational results obtained using high speed computers, that facilitated our new treatment of the subject. Since the new methods partly originated in mathematical advances, there have been two or three mathematical monographs exposing these developments. However, these monographs employ methods and language that are not readily accessible to scientists and engineers, and also do not give explicit tech niques for making practical calculations. In our treatment of the material, we emphasize physical insight rather than mathematical rigor. We present practical methods for describing the motion, for determining the transition from regular to stochastic behavior, and for characterizing the stochasticity. We rely heavily on numerical computations to illustrate the methods and to validate them.

Stochastic Differential Systems Analysis and Filtering

Stochastic Differential Systems Analysis and Filtering PDF Author: V. S. Pugachev
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 584

Get Book Here

Book Description
Gives applied methods for studying stochastic differential systems--in particular, the methods for finding the finite-dimensional distributions of the state vector and of the output of such systems, and also the estimation methods of the state and of the parameters of differential systems based on observations (filtering and extrapolation theory). Also studied are stochastic differential equations of general type with arbitrary processes and independent increments. The equations with Wiener processes are considered as a special case. The construction of stochastic differential systems in the book is based on Pugachev's equations for finite-dimensional characteristic functions of the processes determined by stochastic differential equations. Includes end-of-chapter problems.

Nonlinear Stochastic Evolution Problems in Applied Sciences

Nonlinear Stochastic Evolution Problems in Applied Sciences PDF Author: N. Bellomo
Publisher: Springer Science & Business Media
ISBN: 9401118205
Category : Mathematics
Languages : en
Pages : 228

Get Book Here

Book Description
This volume deals with the analysis of nonlinear evolution problems described by partial differential equations having random or stochastic parameters. The emphasis throughout is on the actual determination of solutions, rather than on proving the existence of solutions, although mathematical proofs are given when this is necessary from an applications point of view. The content is divided into six chapters. Chapter 1 gives a general presentation of mathematical models in continuum mechanics and a description of the way in which problems are formulated. Chapter 2 deals with the problem of the evolution of an unconstrained system having random space-dependent initial conditions, but which is governed by a deterministic evolution equation. Chapter 3 deals with the initial-boundary value problem for equations with random initial and boundary conditions as well as with random parameters where the randomness is modelled by stochastic separable processes. Chapter 4 is devoted to the initial-boundary value problem for models with additional noise, which obey Ito-type partial differential equations. Chapter 5 is essential devoted to the qualitative and quantitative analysis of the chaotic behaviour of systems in continuum physics. Chapter 6 provides indications on the solution of ill-posed and inverse problems of stochastic type and suggests guidelines for future research. The volume concludes with an Appendix which gives a brief presentation of the theory of stochastic processes. Examples, applications and case studies are given throughout the book and range from those involving simple stochasticity to stochastic illposed problems. For applied mathematicians, engineers and physicists whose work involves solving stochastic problems.

Chaotic Transitions in Deterministic and Stochastic Dynamical Systems

Chaotic Transitions in Deterministic and Stochastic Dynamical Systems PDF Author: Emil Simiu
Publisher: Princeton University Press
ISBN: 1400832500
Category : Mathematics
Languages : en
Pages : 244

Get Book Here

Book Description
The classical Melnikov method provides information on the behavior of deterministic planar systems that may exhibit transitions, i.e. escapes from and captures into preferred regions of phase space. This book develops a unified treatment of deterministic and stochastic systems that extends the applicability of the Melnikov method to physically realizable stochastic planar systems with additive, state-dependent, white, colored, or dichotomous noise. The extended Melnikov method yields the novel result that motions with transitions are chaotic regardless of whether the excitation is deterministic or stochastic. It explains the role in the occurrence of transitions of the characteristics of the system and its deterministic or stochastic excitation, and is a powerful modeling and identification tool. The book is designed primarily for readers interested in applications. The level of preparation required corresponds to the equivalent of a first-year graduate course in applied mathematics. No previous exposure to dynamical systems theory or the theory of stochastic processes is required. The theoretical prerequisites and developments are presented in the first part of the book. The second part of the book is devoted to applications, ranging from physics to mechanical engineering, naval architecture, oceanography, nonlinear control, stochastic resonance, and neurophysiology.