Nonlinear Signal Processing

Nonlinear Signal Processing PDF Author: Gonzalo R. Arce
Publisher: John Wiley & Sons
ISBN: 0471691844
Category : Science
Languages : en
Pages : 483

Get Book Here

Book Description
Nonlinear Signal Processing: A Statistical Approach focuses on unifying the study of a broad and important class of nonlinear signal processing algorithms which emerge from statistical estimation principles, and where the underlying signals are non-Gaussian, rather than Gaussian, processes. Notably, by concentrating on just two non-Gaussian models, a large set of tools is developed that encompass a large portion of the nonlinear signal processing tools proposed in the literature over the past several decades. Key features include: * Numerous problems at the end of each chapter to aid development and understanding * Examples and case studies provided throughout the book in a wide range of applications bring the text to life and place the theory into context * A set of 60+ MATLAB software m-files allowing the reader to quickly design and apply any of the nonlinear signal processing algorithms described in the book to an application of interest is available on the accompanying FTP site.

Nonlinear Signal Processing

Nonlinear Signal Processing PDF Author: Gonzalo R. Arce
Publisher: John Wiley & Sons
ISBN: 0471691844
Category : Science
Languages : en
Pages : 483

Get Book Here

Book Description
Nonlinear Signal Processing: A Statistical Approach focuses on unifying the study of a broad and important class of nonlinear signal processing algorithms which emerge from statistical estimation principles, and where the underlying signals are non-Gaussian, rather than Gaussian, processes. Notably, by concentrating on just two non-Gaussian models, a large set of tools is developed that encompass a large portion of the nonlinear signal processing tools proposed in the literature over the past several decades. Key features include: * Numerous problems at the end of each chapter to aid development and understanding * Examples and case studies provided throughout the book in a wide range of applications bring the text to life and place the theory into context * A set of 60+ MATLAB software m-files allowing the reader to quickly design and apply any of the nonlinear signal processing algorithms described in the book to an application of interest is available on the accompanying FTP site.

Nonlinear and Nonstationary Signal Processing

Nonlinear and Nonstationary Signal Processing PDF Author: W. J. Fitzgerald
Publisher: Cambridge University Press
ISBN: 9780521800440
Category : Mathematics
Languages : en
Pages : 510

Get Book Here

Book Description
Signal processing, nonlinear data analysis, nonlinear time series, nonstationary processes.

Nonlinear Optical Systems

Nonlinear Optical Systems PDF Author: Le Nguyen Binh
Publisher: CRC Press
ISBN: 1439845476
Category : Science
Languages : en
Pages : 465

Get Book Here

Book Description
Nonlinear Optical Systems: Principles, Phenomena, and Advanced Signal Processing is a simplified overview of the evolution of technology associated with nonlinear systems and advanced signal processing. This book’s coverage ranges from fundamentals to phenomena to the most cutting-edge aspects of systems for next-generation biomedical monitoring and nonlinear optical transmission. The authors address how these systems are applied through photonic signal processing in contemporary optical systems for communications and/or laser systems. They include a concise but sufficient explanation of mathematical representation of nonlinear equations to provide insight into nonlinear dynamics at different phases. The book also describes advanced aspects of solitons and bound solitons for passive- and active-mode locked fiber lasers, in which higher-order differential equations can be employed to represent the dynamics of amplitude evolution in the current or voltages of lightwaves in such systems. Covering a wide range of topics, this book: Introduces nonlinear systems and some mathematical representations, particularly the routes to chaos and bifurcation Describes nonlinear fiber lightwave lasing systems Covers nonlinear phenomena in fiber lasers, including both passive and active energy storage cavities Experimentally and theoretically demonstrates soliton pulses, in which lightwaves are the carrier under their envelopes Assembles and demonstrates sequences of both single and multiple solitons in a group and then assesses their dynamics in detail Examines the evolution of bound solitons, which are transmitted through single-mode optical fibers that compose a phase variation system This text outlines the theory and techniques used in nonlinear physics and applications for physical systems. It also illustrates the use of MATLAB® and Simulink® computer models and processing techniques for nonlinear signals. Building on readers’ newly acquired fundamental understanding of nonlinear systems and associated signal processing, the book then demonstrates the use of such applications in real-world, practical environments.

Nonlinear Digital Filters

Nonlinear Digital Filters PDF Author: W. K. Ling
Publisher: Academic Press
ISBN: 0080550010
Category : Technology & Engineering
Languages : en
Pages : 217

Get Book Here

Book Description
Nonlinear Digital Filters provides an easy to understand overview of nonlinear behavior in digital filters, showing how it can be utilized or avoided when operating nonlinear digital filters. It gives techniques for analyzing discrete-time systems with discontinuous linearity, enabling the analysis of other nonlinear discrete-time systems, such as sigma delta modulators, digital phase lock loops, and turbo coders. It uses new methods based on symbolic dynamics, enabling the engineer to easily operate reliable nonlinear digital filters. It gives practical, 'real-world' applications of nonlinear digital filters and contains many examples. The book is ideal for professional engineers working with signal processing applications, as well as advanced undergraduates and graduates conducting a nonlinear filter analysis project. Uses new methods based on symbolic dynamics, enabling the engineer more easily to operate reliable nonlinear digital filters Gives practical, "real-world" applications of nonlinear digital filter Includes many examples.

Analysis and Control of Nonlinear Process Systems

Analysis and Control of Nonlinear Process Systems PDF Author: Katalin M. Hangos
Publisher: Springer Science & Business Media
ISBN: 185233861X
Category : Mathematics
Languages : en
Pages : 325

Get Book Here

Book Description
This straightforward text makes the complicated but powerful methods of non-linear control accessible to process engineers. Not only does it cover the necessary mathematics, but it consistently refers to the widely-known finite-dimensional linear time-invariant continuous case as a basis for extension to the nonlinear situation.

Signal Processing for Neuroscientists

Signal Processing for Neuroscientists PDF Author: Wim van Drongelen
Publisher: Elsevier
ISBN: 008046775X
Category : Science
Languages : en
Pages : 319

Get Book Here

Book Description
Signal Processing for Neuroscientists introduces analysis techniques primarily aimed at neuroscientists and biomedical engineering students with a reasonable but modest background in mathematics, physics, and computer programming. The focus of this text is on what can be considered the 'golden trio' in the signal processing field: averaging, Fourier analysis, and filtering. Techniques such as convolution, correlation, coherence, and wavelet analysis are considered in the context of time and frequency domain analysis. The whole spectrum of signal analysis is covered, ranging from data acquisition to data processing; and from the mathematical background of the analysis to the practical application of processing algorithms. Overall, the approach to the mathematics is informal with a focus on basic understanding of the methods and their interrelationships rather than detailed proofs or derivations. One of the principle goals is to provide the reader with the background required to understand the principles of commercially available analyses software, and to allow him/her to construct his/her own analysis tools in an environment such as MATLAB®. - Multiple color illustrations are integrated in the text - Includes an introduction to biomedical signals, noise characteristics, and recording techniques - Basics and background for more advanced topics can be found in extensive notes and appendices - A Companion Website hosts the MATLAB scripts and several data files: http://www.elsevierdirect.com/companion.jsp?ISBN=9780123708670

Adaptive Nonlinear System Identification

Adaptive Nonlinear System Identification PDF Author: Tokunbo Ogunfunmi
Publisher: Springer Science & Business Media
ISBN: 0387686304
Category : Science
Languages : en
Pages : 238

Get Book Here

Book Description
Focuses on System Identification applications of the adaptive methods presented. but which can also be applied to other applications of adaptive nonlinear processes. Covers recent research results in the area of adaptive nonlinear system identification from the authors and other researchers in the field.

Complex Valued Nonlinear Adaptive Filters

Complex Valued Nonlinear Adaptive Filters PDF Author: Danilo P. Mandic
Publisher: John Wiley & Sons
ISBN: 0470742631
Category : Science
Languages : en
Pages : 344

Get Book Here

Book Description
This book was written in response to the growing demand for a text that provides a unified treatment of linear and nonlinear complex valued adaptive filters, and methods for the processing of general complex signals (circular and noncircular). It brings together adaptive filtering algorithms for feedforward (transversal) and feedback architectures and the recent developments in the statistics of complex variable, under the powerful frameworks of CR (Wirtinger) calculus and augmented complex statistics. This offers a number of theoretical performance gains, which is illustrated on both stochastic gradient algorithms, such as the augmented complex least mean square (ACLMS), and those based on Kalman filters. This work is supported by a number of simulations using synthetic and real world data, including the noncircular and intermittent radar and wind signals.

Sampled-Data Models for Linear and Nonlinear Systems

Sampled-Data Models for Linear and Nonlinear Systems PDF Author: Juan I. Yuz
Publisher: Springer Science & Business Media
ISBN: 1447155629
Category : Technology & Engineering
Languages : en
Pages : 288

Get Book Here

Book Description
Sampled-data Models for Linear and Nonlinear Systems provides a fresh new look at a subject with which many researchers may think themselves familiar. Rather than emphasising the differences between sampled-data and continuous-time systems, the authors proceed from the premise that, with modern sampling rates being as high as they are, it is becoming more appropriate to emphasise connections and similarities. The text is driven by three motives: · the ubiquity of computers in modern control and signal-processing equipment means that sampling of systems that really evolve continuously is unavoidable; · although superficially straightforward, sampling can easily produce erroneous results when not treated properly; and · the need for a thorough understanding of many aspects of sampling among researchers and engineers dealing with applications to which they are central. The authors tackle many misconceptions which, although appearing reasonable at first sight, are in fact either partially or completely erroneous. They also deal with linear and nonlinear, deterministic and stochastic cases. The impact of the ideas presented on several standard problems in signals and systems is illustrated using a number of applications. Academic researchers and graduate students in systems, control and signal processing will find the ideas presented in Sampled-data Models for Linear and Nonlinear Systems to be a useful manual for dealing with sampled-data systems, clearing away mistaken ideas and bringing the subject thoroughly up to date. Researchers in statistics and economics will also derive benefit from the reworking of ideas relating a model derived from data sampling to an original continuous system.

Adaptive Learning Methods for Nonlinear System Modeling

Adaptive Learning Methods for Nonlinear System Modeling PDF Author: Danilo Comminiello
Publisher: Butterworth-Heinemann
ISBN: 0128129778
Category : Technology & Engineering
Languages : en
Pages : 390

Get Book Here

Book Description
Adaptive Learning Methods for Nonlinear System Modeling presents some of the recent advances on adaptive algorithms and machine learning methods designed for nonlinear system modeling and identification. Real-life problems always entail a certain degree of nonlinearity, which makes linear models a non-optimal choice. This book mainly focuses on those methodologies for nonlinear modeling that involve any adaptive learning approaches to process data coming from an unknown nonlinear system. By learning from available data, such methods aim at estimating the nonlinearity introduced by the unknown system. In particular, the methods presented in this book are based on online learning approaches, which process the data example-by-example and allow to model even complex nonlinearities, e.g., showing time-varying and dynamic behaviors. Possible fields of applications of such algorithms includes distributed sensor networks, wireless communications, channel identification, predictive maintenance, wind prediction, network security, vehicular networks, active noise control, information forensics and security, tracking control in mobile robots, power systems, and nonlinear modeling in big data, among many others. This book serves as a crucial resource for researchers, PhD and post-graduate students working in the areas of machine learning, signal processing, adaptive filtering, nonlinear control, system identification, cooperative systems, computational intelligence. This book may be also of interest to the industry market and practitioners working with a wide variety of nonlinear systems. - Presents the key trends and future perspectives in the field of nonlinear signal processing and adaptive learning. - Introduces novel solutions and improvements over the state-of-the-art methods in the very exciting area of online and adaptive nonlinear identification. - Helps readers understand important methods that are effective in nonlinear system modelling, suggesting the right methodology to address particular issues.