Nonlinear Regression Analysis and Its Applications

Nonlinear Regression Analysis and Its Applications PDF Author: Douglas M. Bates
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 398

Get Book Here

Book Description
Provides a presentation of the theoretical, practical, and computational aspects of nonlinear regression. There is background material on linear regression, including a geometrical development for linear and nonlinear least squares.

Nonlinear Regression Analysis and Its Applications

Nonlinear Regression Analysis and Its Applications PDF Author: Douglas M. Bates
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 398

Get Book Here

Book Description
Provides a presentation of the theoretical, practical, and computational aspects of nonlinear regression. There is background material on linear regression, including a geometrical development for linear and nonlinear least squares.

Nonlinear Regression Analysis and Its Applications

Nonlinear Regression Analysis and Its Applications PDF Author: Douglas M. Bates
Publisher: Wiley-Blackwell
ISBN:
Category : Mathematics
Languages : en
Pages : 390

Get Book Here

Book Description
A balanced presentation of the theoretical, practical, and computational aspects of nonlinear regression. Provides background material on linear regression, including a geometrical development for linear and nonlinear least squares. The authors employ real data sets throughout, and their extensive use of geometric constructs and continuing examples makes the progression of ideas appear very natural. Includes pseudocode for computing algorithms.

Nonlinear Regression

Nonlinear Regression PDF Author: George A. F. Seber
Publisher: John Wiley & Sons
ISBN: 0471725307
Category : Mathematics
Languages : en
Pages : 800

Get Book Here

Book Description
WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. From the Reviews of Nonlinear Regression "A very good book and an important one in that it is likely to become a standard reference for all interested in nonlinear regression; and I would imagine that any statistician concerned with nonlinear regression would want a copy on his shelves." –The Statistician "Nonlinear Regression also includes a reference list of over 700 entries. The compilation of this material and cross-referencing of it is one of the most valuable aspects of the book. Nonlinear Regression can provide the researcher unfamiliar with a particular specialty area of nonlinear regression an introduction to that area of nonlinear regression and access to the appropriate references . . . Nonlinear Regression provides by far the broadest discussion of nonlinear regression models currently available and will be a valuable addition to the library of anyone interested in understanding and using such models including the statistical researcher." –Mathematical Reviews

Nonlinear Regression with R

Nonlinear Regression with R PDF Author: Christian Ritz
Publisher: Springer Science & Business Media
ISBN: 0387096167
Category : Mathematics
Languages : en
Pages : 151

Get Book Here

Book Description
- Coherent and unified treatment of nonlinear regression with R. - Example-based approach. - Wide area of application.

Regression Analysis and its Application

Regression Analysis and its Application PDF Author: Richard F. Gunst
Publisher: CRC Press
ISBN: 9780824769932
Category : Mathematics
Languages : en
Pages : 426

Get Book Here

Book Description
Regression Analysis and Its Application: A Data-Oriented Approach answers the need for researchers and students who would like a better understanding of classical regression analysis. Useful either as a textbook or as a reference source, this book bridges the gap between the purely theoretical coverage of regression analysis and its practical application. The book presents regression analysis in the general context of data analysis. Using a teach-by-example format, it contains ten major data sets along with several smaller ones to illustrate the common characteristics of regression data and properties of statistics that are employed in regression analysis. The book covers model misspecification, residual analysis, multicollinearity, and biased regression estimators. It also focuses on data collection, model assumptions, and the interpretation of parameter estimates. Complete with an extensive bibliography, Regression Analysis and Its Application is suitable for statisticians, graduate and upper-level undergraduate students, and research scientists in biometry, business, ecology, economics, education, engineering, mathematics, physical sciences, psychology, and sociology. In addition, data collection agencies in the government and private sector will benefit from the book.

Nonlinear Regression Modeling for Engineering Applications

Nonlinear Regression Modeling for Engineering Applications PDF Author: R. Russell Rhinehart
Publisher: John Wiley & Sons
ISBN: 1118597966
Category : Mathematics
Languages : en
Pages : 402

Get Book Here

Book Description
Since mathematical models express our understanding of how nature behaves, we use them to validate our understanding of the fundamentals about systems (which could be processes, equipment, procedures, devices, or products). Also, when validated, the model is useful for engineering applications related to diagnosis, design, and optimization. First, we postulate a mechanism, then derive a model grounded in that mechanistic understanding. If the model does not fit the data, our understanding of the mechanism was wrong or incomplete. Patterns in the residuals can guide model improvement. Alternately, when the model fits the data, our understanding is sufficient and confidently functional for engineering applications. This book details methods of nonlinear regression, computational algorithms,model validation, interpretation of residuals, and useful experimental design. The focus is on practical applications, with relevant methods supported by fundamental analysis. This book will assist either the academic or industrial practitioner to properly classify the system, choose between the various available modeling options and regression objectives, design experiments to obtain data capturing critical system behaviors, fit the model parameters based on that data, and statistically characterize the resulting model. The author has used the material in the undergraduate unit operations lab course and in advanced control applications.

Applications of Nonlinear Analysis

Applications of Nonlinear Analysis PDF Author: Themistocles M. Rassias
Publisher: Springer
ISBN: 3319898159
Category : Mathematics
Languages : en
Pages : 932

Get Book Here

Book Description
New applications, research, and fundamental theories in nonlinear analysis are presented in this book. Each chapter provides a unique insight into a large domain of research focusing on functional equations, stability theory, approximation theory, inequalities, nonlinear functional analysis, and calculus of variations with applications to optimization theory. Topics include: Fixed point theory Fixed-circle theory Coupled fixed points Nonlinear duality in Banach spaces Jensen's integral inequality and applications Nonlinear differential equations Nonlinear integro-differential equations Quasiconvexity, Stability of a Cauchy-Jensen additive mapping Generalizations of metric spaces Hilbert-type integral inequality, Solitons Quadratic functional equations in fuzzy Banach spaces Asymptotic orbits in Hill’sproblem Time-domain electromagnetics Inertial Mann algorithms Mathematical modelling Robotics Graduate students and researchers will find this book helpful in comprehending current applications and developments in mathematical analysis. Research scientists and engineers studying essential modern methods and techniques to solve a variety of problems will find this book a valuable source filled with examples that illustrate concepts.

Alternative Methods of Regression

Alternative Methods of Regression PDF Author: David Birkes
Publisher: John Wiley & Sons
ISBN: 1118150244
Category : Mathematics
Languages : en
Pages : 248

Get Book Here

Book Description
Of related interest. Nonlinear Regression Analysis and its Applications Douglas M. Bates and Donald G. Watts ".an extraordinary presentation of concepts and methods concerning the use and analysis of nonlinear regression models.highly recommend[ed].for anyone needing to use and/or understand issues concerning the analysis of nonlinear regression models." --Technometrics This book provides a balance between theory and practice supported by extensive displays of instructive geometrical constructs. Numerous in-depth case studies illustrate the use of nonlinear regression analysis--with all data sets real. Topics include: multi-response parameter estimation; models defined by systems of differential equations; and improved methods for presenting inferential results of nonlinear analysis. 1988 (0-471-81643-4) 365 pp. Nonlinear Regression G. A. F. Seber and C. J. Wild ".[a] comprehensive and scholarly work.impressively thorough with attention given to every aspect of the modeling process." --Short Book Reviews of the International Statistical Institute In this introduction to nonlinear modeling, the authors examine a wide range of estimation techniques including least squares, quasi-likelihood, and Bayesian methods, and discuss some of the problems associated with estimation. The book presents new and important material relating to the concept of curvature and its growing role in statistical inference. It also covers three useful classes of models --growth, compartmental, and multiphase --and emphasizes the limitations involved in fitting these models. Packed with examples and graphs, it offers statisticians, statistical consultants, and statistically oriented research scientists up-to-date access to their fields. 1989 (0-471-61760-1) 768 pp. Mathematical Programming in Statistics T. S. Arthanari and Yadolah Dodge "The authors have achieved their stated intention.in an outstanding and useful manner for both students and researchers.Contains a superb synthesis of references linked to the special topics and formulations by a succinct set of bibliographical notes.Should be in the hands of all system analysts and computer system architects." --Computing Reviews This unique book brings together most of the available results on applications of mathematical programming in statistics, and also develops the necessary statistical and programming theory and methods. 1981 (0-471-08073-X) 413 pp.

Regression Analysis and Linear Models

Regression Analysis and Linear Models PDF Author: Richard B. Darlington
Publisher: Guilford Publications
ISBN: 1462527981
Category : Social Science
Languages : en
Pages : 689

Get Book Here

Book Description
Emphasizing conceptual understanding over mathematics, this user-friendly text introduces linear regression analysis to students and researchers across the social, behavioral, consumer, and health sciences. Coverage includes model construction and estimation, quantification and measurement of multivariate and partial associations, statistical control, group comparisons, moderation analysis, mediation and path analysis, and regression diagnostics, among other important topics. Engaging worked-through examples demonstrate each technique, accompanied by helpful advice and cautions. The use of SPSS, SAS, and STATA is emphasized, with an appendix on regression analysis using R. The companion website (www.afhayes.com) provides datasets for the book's examples as well as the RLM macro for SPSS and SAS. Pedagogical Features: *Chapters include SPSS, SAS, or STATA code pertinent to the analyses described, with each distinctively formatted for easy identification. *An appendix documents the RLM macro, which facilitates computations for estimating and probing interactions, dominance analysis, heteroscedasticity-consistent standard errors, and linear spline regression, among other analyses. *Students are guided to practice what they learn in each chapter using datasets provided online. *Addresses topics not usually covered, such as ways to measure a variable’s importance, coding systems for representing categorical variables, causation, and myths about testing interaction.

Fitting Models to Biological Data Using Linear and Nonlinear Regression

Fitting Models to Biological Data Using Linear and Nonlinear Regression PDF Author: Harvey Motulsky
Publisher: Oxford University Press
ISBN: 9780198038344
Category : Mathematics
Languages : en
Pages : 352

Get Book Here

Book Description
Most biologists use nonlinear regression more than any other statistical technique, but there are very few places to learn about curve-fitting. This book, by the author of the very successful Intuitive Biostatistics, addresses this relatively focused need of an extraordinarily broad range of scientists.