Julia Programming for Operations Research

Julia Programming for Operations Research PDF Author: Changhyun Kwon
Publisher: Changhyun Kwon
ISBN: 1798205475
Category : Technology & Engineering
Languages : en
Pages : 262

Get Book Here

Book Description
Last Updated: December 2020 Based on Julia v1.3+ and JuMP v0.21+ The main motivation of writing this book was to help the author himself. He is a professor in the field of operations research, and his daily activities involve building models of mathematical optimization, developing algorithms for solving the problems, implementing those algorithms using computer programming languages, experimenting with data, etc. Three languages are involved: human language, mathematical language, and computer language. His team of students need to go over three different languages, which requires "translation" among the three languages. As this book was written to teach his research group how to translate, this book will also be useful for anyone who needs to learn how to translate in a similar situation. The Julia Language is as fast as C, as convenient as MATLAB, and as general as Python with a flexible algebraic modeling language for mathematical optimization problems. With the great support from Julia developers, especially the developers of the JuMP—Julia for Mathematical Programming—package, Julia makes a perfect tool for students and professionals in operations research and related areas such as industrial engineering, management science, transportation engineering, economics, and regional science. For more information, visit: http://www.chkwon.net/julia

Julia Programming for Operations Research

Julia Programming for Operations Research PDF Author: Changhyun Kwon
Publisher: Changhyun Kwon
ISBN: 1798205475
Category : Technology & Engineering
Languages : en
Pages : 262

Get Book Here

Book Description
Last Updated: December 2020 Based on Julia v1.3+ and JuMP v0.21+ The main motivation of writing this book was to help the author himself. He is a professor in the field of operations research, and his daily activities involve building models of mathematical optimization, developing algorithms for solving the problems, implementing those algorithms using computer programming languages, experimenting with data, etc. Three languages are involved: human language, mathematical language, and computer language. His team of students need to go over three different languages, which requires "translation" among the three languages. As this book was written to teach his research group how to translate, this book will also be useful for anyone who needs to learn how to translate in a similar situation. The Julia Language is as fast as C, as convenient as MATLAB, and as general as Python with a flexible algebraic modeling language for mathematical optimization problems. With the great support from Julia developers, especially the developers of the JuMP—Julia for Mathematical Programming—package, Julia makes a perfect tool for students and professionals in operations research and related areas such as industrial engineering, management science, transportation engineering, economics, and regional science. For more information, visit: http://www.chkwon.net/julia

Nonlinear Programming for Operations Research

Nonlinear Programming for Operations Research PDF Author: Donald M. Simmons
Publisher: Prentice Hall
ISBN:
Category : Mathematics
Languages : en
Pages : 472

Get Book Here

Book Description
Introduction to nonlinear programming; Review of linear programming; Further mathematical background; Classical uncostrained optimization; Optimum-seeking by experimentation; Lagrange multipliers and kuhn-tucker theory; Quadratic programming; Algorithms for linearly constrained problems; Algorithms for nonlinear constrained problems.

Linear and Nonlinear Programming

Linear and Nonlinear Programming PDF Author: David G. Luenberger
Publisher: Springer Science & Business Media
ISBN: 0387745033
Category : Business & Economics
Languages : en
Pages : 546

Get Book Here

Book Description
This third edition of the classic textbook in Optimization has been fully revised and updated. It comprehensively covers modern theoretical insights in this crucial computing area, and will be required reading for analysts and operations researchers in a variety of fields. The book connects the purely analytical character of an optimization problem, and the behavior of algorithms used to solve it. Now, the third edition has been completely updated with recent Optimization Methods. The book also has a new co-author, Yinyu Ye of California’s Stanford University, who has written lots of extra material including some on Interior Point Methods.

Nonlinear Integer Programming

Nonlinear Integer Programming PDF Author: Duan Li
Publisher: Springer Science & Business Media
ISBN: 0387329951
Category : Mathematics
Languages : en
Pages : 452

Get Book Here

Book Description
A combination of both Integer Programming and Nonlinear Optimization, this is a powerful book that surveys the field and provides a state-of-the-art treatment of Nonlinear Integer Programming. It is the first book available on the subject. The book aims to bring the theoretical foundation and solution methods for nonlinear integer programming to students and researchers in optimization, operations research, and computer science.

Linear and Nonlinear Programming

Linear and Nonlinear Programming PDF Author: David G. Luenberger
Publisher: Springer
ISBN: 3319188429
Category : Business & Economics
Languages : en
Pages : 547

Get Book Here

Book Description
This new edition covers the central concepts of practical optimization techniques, with an emphasis on methods that are both state-of-the-art and popular. One major insight is the connection between the purely analytical character of an optimization problem and the behavior of algorithms used to solve a problem. This was a major theme of the first edition of this book and the fourth edition expands and further illustrates this relationship. As in the earlier editions, the material in this fourth edition is organized into three separate parts. Part I is a self-contained introduction to linear programming. The presentation in this part is fairly conventional, covering the main elements of the underlying theory of linear programming, many of the most effective numerical algorithms, and many of its important special applications. Part II, which is independent of Part I, covers the theory of unconstrained optimization, including both derivations of the appropriate optimality conditions and an introduction to basic algorithms. This part of the book explores the general properties of algorithms and defines various notions of convergence. Part III extends the concepts developed in the second part to constrained optimization problems. Except for a few isolated sections, this part is also independent of Part I. It is possible to go directly into Parts II and III omitting Part I, and, in fact, the book has been used in this way in many universities. New to this edition is a chapter devoted to Conic Linear Programming, a powerful generalization of Linear Programming. Indeed, many conic structures are possible and useful in a variety of applications. It must be recognized, however, that conic linear programming is an advanced topic, requiring special study. Another important topic is an accelerated steepest descent method that exhibits superior convergence properties, and for this reason, has become quite popular. The proof of the convergence property for both standard and accelerated steepest descent methods are presented in Chapter 8. As in previous editions, end-of-chapter exercises appear for all chapters. From the reviews of the Third Edition: “... this very well-written book is a classic textbook in Optimization. It should be present in the bookcase of each student, researcher, and specialist from the host of disciplines from which practical optimization applications are drawn.” (Jean-Jacques Strodiot, Zentralblatt MATH, Vol. 1207, 2011)

Optimization Methods in Operations Research and Systems Analysis

Optimization Methods in Operations Research and Systems Analysis PDF Author: K V Mital
Publisher: New Age International
ISBN: 9788122408737
Category : Linear programming
Languages : en
Pages : 408

Get Book Here

Book Description
The Mathematical Aspects Of Operations Research And Systems Analysis Concerned With Optimization Of Objectives Form The Subject Of This Book. In Its Revised, Updated And Enlarged Third Edition, Discussion On Linear Programming Has Been Expanded And Recast With Greater Emphasis On Duality Theory, Sensitivity Analysis, Parametric Programming, Multiobjective And Goal Programming And Formulation And Solution Of Practical Problems. Chapters On Nonlinear Programming Include Integer Programming, Kuhn-Tucker Theory, Separable And Quadratic Programming, Dynamic Programming, Geometric Programming And Direct Search And Gradient Methods. A Chapter On Theory Of Games Is Also Included. A Short Note On Karmarkars Projective Algorithm Is Given In The Appendix.The Book Keeps In View The Needs Of The Student Taking A Regular Course In Operations Research Or Mathematical Programming, And Also Of Research Scholars In Other Disciplines Who Have A Limited Objective Of Learning The Practical Aspects Of Various Optimization Methods To Solve Their Special Problems. For The Former, Illustrative Solved Examples And Unsolved Examples At The End Of Each Chapter, Small Enough To Be Solved By Hand, Would Be Of Greater Interest, While For He Latter, Summaries Of Computational Algorithms For Various Methods Which Would Help Him To Write Computer Programmes To Solve Larger Problems Would Be More Helpful. A Few Computer Programmes In Fortran Iv Have Also Been Given In The Appendix.

Linear and Nonlinear Optimization

Linear and Nonlinear Optimization PDF Author: Richard W. Cottle
Publisher: Springer
ISBN: 1493970550
Category : Business & Economics
Languages : en
Pages : 644

Get Book Here

Book Description
​This textbook on Linear and Nonlinear Optimization is intended for graduate and advanced undergraduate students in operations research and related fields. It is both literate and mathematically strong, yet requires no prior course in optimization. As suggested by its title, the book is divided into two parts covering in their individual chapters LP Models and Applications; Linear Equations and Inequalities; The Simplex Algorithm; Simplex Algorithm Continued; Duality and the Dual Simplex Algorithm; Postoptimality Analyses; Computational Considerations; Nonlinear (NLP) Models and Applications; Unconstrained Optimization; Descent Methods; Optimality Conditions; Problems with Linear Constraints; Problems with Nonlinear Constraints; Interior-Point Methods; and an Appendix covering Mathematical Concepts. Each chapter ends with a set of exercises. The book is based on lecture notes the authors have used in numerous optimization courses the authors have taught at Stanford University. It emphasizes modeling and numerical algorithms for optimization with continuous (not integer) variables. The discussion presents the underlying theory without always focusing on formal mathematical proofs (which can be found in cited references). Another feature of this book is its inclusion of cultural and historical matters, most often appearing among the footnotes. "This book is a real gem. The authors do a masterful job of rigorously presenting all of the relevant theory clearly and concisely while managing to avoid unnecessary tedious mathematical details. This is an ideal book for teaching a one or two semester masters-level course in optimization – it broadly covers linear and nonlinear programming effectively balancing modeling, algorithmic theory, computation, implementation, illuminating historical facts, and numerous interesting examples and exercises. Due to the clarity of the exposition, this book also serves as a valuable reference for self-study." Professor Ilan Adler, IEOR Department, UC Berkeley "A carefully crafted introduction to the main elements and applications of mathematical optimization. This volume presents the essential concepts of linear and nonlinear programming in an accessible format filled with anecdotes, examples, and exercises that bring the topic to life. The authors plumb their decades of experience in optimization to provide an enriching layer of historical context. Suitable for advanced undergraduates and masters students in management science, operations research, and related fields." Michael P. Friedlander, IBM Professor of Computer Science, Professor of Mathematics, University of British Columbia

Nonlinear Programming

Nonlinear Programming PDF Author: Dimitri P. Bertsekas
Publisher: Goodman Publishers
ISBN:
Category : Mathematics
Languages : en
Pages : 808

Get Book Here

Book Description


Nonlinear Multiobjective Optimization

Nonlinear Multiobjective Optimization PDF Author: Kaisa Miettinen
Publisher: Springer Science & Business Media
ISBN: 1461555639
Category : Business & Economics
Languages : en
Pages : 304

Get Book Here

Book Description
Problems with multiple objectives and criteria are generally known as multiple criteria optimization or multiple criteria decision-making (MCDM) problems. So far, these types of problems have typically been modelled and solved by means of linear programming. However, many real-life phenomena are of a nonlinear nature, which is why we need tools for nonlinear programming capable of handling several conflicting or incommensurable objectives. In this case, methods of traditional single objective optimization and linear programming are not enough; we need new ways of thinking, new concepts, and new methods - nonlinear multiobjective optimization. Nonlinear Multiobjective Optimization provides an extensive, up-to-date, self-contained and consistent survey, review of the literature and of the state of the art on nonlinear (deterministic) multiobjective optimization, its methods, its theory and its background. The amount of literature on multiobjective optimization is immense. The treatment in this book is based on approximately 1500 publications in English printed mainly after the year 1980. Problems related to real-life applications often contain irregularities and nonsmoothnesses. The treatment of nondifferentiable multiobjective optimization in the literature is rather rare. For this reason, this book contains material about the possibilities, background, theory and methods of nondifferentiable multiobjective optimization as well. This book is intended for both researchers and students in the areas of (applied) mathematics, engineering, economics, operations research and management science; it is meant for both professionals and practitioners in many different fields of application. The intention has been to provide a consistent summary that may help in selecting an appropriate method for the problem to be solved. It is hoped the extensive bibliography will be of value to researchers.

OPTIMIZATION AND OPERATIONS RESEARCH – Volume I

OPTIMIZATION AND OPERATIONS RESEARCH – Volume I PDF Author: Ulrich Derigs
Publisher: EOLSS Publications
ISBN: 1905839480
Category :
Languages : en
Pages : 344

Get Book Here

Book Description
Optimization and Operations Research is a component of Encyclopedia of Mathematical Sciences in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The Theme on Optimization and Operations Research is organized into six different topics which represent the main scientific areas of the theme: 1. Fundamentals of Operations Research; 2. Advanced Deterministic Operations Research; 3. Optimization in Infinite Dimensions; 4. Game Theory; 5. Stochastic Operations Research; 6. Decision Analysis, which are then expanded into multiple subtopics, each as a chapter. These four volumes are aimed at the following five major target audiences: University and College students Educators, Professional Practitioners, Research Personnel and Policy Analysts, Managers, and Decision Makers and NGOs.