Author: Mitsuo Kono
Publisher: Springer Science & Business Media
ISBN: 3642146945
Category : Science
Languages : en
Pages : 540
Book Description
A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.
Nonlinear Physics of Plasmas
Author: Mitsuo Kono
Publisher: Springer Science & Business Media
ISBN: 3642146945
Category : Science
Languages : en
Pages : 540
Book Description
A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.
Publisher: Springer Science & Business Media
ISBN: 3642146945
Category : Science
Languages : en
Pages : 540
Book Description
A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.
Nonlinear Physics
Author: R. Z. Sagdeev
Publisher: CRC Press
ISBN: 9783718648283
Category : Mathematics
Languages : en
Pages : 726
Book Description
Translated from the Russian. Gathers together the basic ideas of nonlinear theory essential for all branches of physics: mechanics of continuous media, optics, radiophysics, solid state physics, plasma physics. Includes color plates. Two sets of computer software (eight scenarios of dynamic computer graphics, and an ATRS program for research workers) are available separately. Annotation copyrighted by Book News, Inc., Portland, OR
Publisher: CRC Press
ISBN: 9783718648283
Category : Mathematics
Languages : en
Pages : 726
Book Description
Translated from the Russian. Gathers together the basic ideas of nonlinear theory essential for all branches of physics: mechanics of continuous media, optics, radiophysics, solid state physics, plasma physics. Includes color plates. Two sets of computer software (eight scenarios of dynamic computer graphics, and an ATRS program for research workers) are available separately. Annotation copyrighted by Book News, Inc., Portland, OR
Nonlinear Wave Processes in Acoustics
Author: K. Naugolnykh
Publisher: Cambridge University Press
ISBN: 9780521399845
Category : Mathematics
Languages : en
Pages : 316
Book Description
This text considers models of different "acoustic" media as well as equations and behavior of finite-amplitude waves. It also considers the effects of nonlinearity, dissipation, dispersion, and for two- and three-dimensional problems, reflection and diffraction on the evolution and interaction of acoustic beams.
Publisher: Cambridge University Press
ISBN: 9780521399845
Category : Mathematics
Languages : en
Pages : 316
Book Description
This text considers models of different "acoustic" media as well as equations and behavior of finite-amplitude waves. It also considers the effects of nonlinearity, dissipation, dispersion, and for two- and three-dimensional problems, reflection and diffraction on the evolution and interaction of acoustic beams.
Physics of Nonlinear Optics
Author: Y. V. G. S. Murti
Publisher: Springer Nature
ISBN: 3030739791
Category : Science
Languages : en
Pages : 188
Book Description
The book is designed to serve as a textbook for courses offered to upper-undergraduate students enrolled in physics. The first edition of this book was published in 2014. As there is a demand for the next edition, it is quite natural to take note of the several advances that have occurred in the subject over the past five years and to decide which of these are appropriate for inclusion at the textbook level, given the fundamental nature and the significance of the subject area. This is the prime motivation for bringing out a revised second edition. Among the newer mechanisms and materials, the book introduces the super-continuum generation, which arises from an excellent interplay of the various mechanisms of optical nonlinearity. The topics covered in this book are quantum mechanics of nonlinear interaction of matter and radiation, formalism and phenomenology of nonlinear wave mixing processes, optical phase conjugation and applications, self-focusing and self-phase modulation and their role in pulse modification, nonlinear absorption mechanisms, and optical limiting applications, photonic switching and bi-stability, and physical mechanisms leading to a nonlinear response in a variety of materials. This book has emerged from an attempt to address the requirement of presenting the subject at the college level. This textbook includes rigorous features such as the elucidation of relevant basic principles of physics; a clear exposition of the ideas involved at an appropriate level; coverage of the physical mechanisms of non-linearity; updates on physical mechanisms and emerging photonic materials and emphasis on the experimental study of nonlinear interactions. The detailed coverage and pedagogical tools make this an ideal textbook for students and researchers enrolled in physics and related courses.
Publisher: Springer Nature
ISBN: 3030739791
Category : Science
Languages : en
Pages : 188
Book Description
The book is designed to serve as a textbook for courses offered to upper-undergraduate students enrolled in physics. The first edition of this book was published in 2014. As there is a demand for the next edition, it is quite natural to take note of the several advances that have occurred in the subject over the past five years and to decide which of these are appropriate for inclusion at the textbook level, given the fundamental nature and the significance of the subject area. This is the prime motivation for bringing out a revised second edition. Among the newer mechanisms and materials, the book introduces the super-continuum generation, which arises from an excellent interplay of the various mechanisms of optical nonlinearity. The topics covered in this book are quantum mechanics of nonlinear interaction of matter and radiation, formalism and phenomenology of nonlinear wave mixing processes, optical phase conjugation and applications, self-focusing and self-phase modulation and their role in pulse modification, nonlinear absorption mechanisms, and optical limiting applications, photonic switching and bi-stability, and physical mechanisms leading to a nonlinear response in a variety of materials. This book has emerged from an attempt to address the requirement of presenting the subject at the college level. This textbook includes rigorous features such as the elucidation of relevant basic principles of physics; a clear exposition of the ideas involved at an appropriate level; coverage of the physical mechanisms of non-linearity; updates on physical mechanisms and emerging photonic materials and emphasis on the experimental study of nonlinear interactions. The detailed coverage and pedagogical tools make this an ideal textbook for students and researchers enrolled in physics and related courses.
Nonlinear Dynamics and Chaos
Author: Steven H. Strogatz
Publisher: CRC Press
ISBN: 0429961111
Category : Mathematics
Languages : en
Pages : 532
Book Description
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Publisher: CRC Press
ISBN: 0429961111
Category : Mathematics
Languages : en
Pages : 532
Book Description
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Advanced Photonics with Second-Order Optically Nonlinear Processes
Author: A.D. Boardman
Publisher: Springer Science & Business Media
ISBN: 9400708505
Category : Science
Languages : en
Pages : 491
Book Description
Although it took some time to establish the word, photonics is both widely accepted and used throughout the world and a major area of activity concerns nonlinear materials. In these the nonlinearity mainly arises from second-order or third-order nonlinear optical processes. A restriction is that second-order processes only occur in media that do not possess a centre of symmetry. Optical fibres, on the other hand, being made of silica glass, created by fusing SiO molecules, are made of material with a centre of z symmetry, so the bulk of all processes are governed by third-order nonlinearity. Indeed, optical fibre nonlinearities have been extensively studied for the last thirty years and can be truly hailed as a success story of nonlinear optics. In fact, the fabrication ofsuch fibres, and the exploitation oftheir nonlinearity, is in an advanced stage - not least being their capacity to sustain envelope solitons. What then ofsecond-order nonlinearity? This is also well-known for its connection to second-harmonic generation. It is an immediate concern, however, to understand how waves can mix and conserve both energy and momentum ofthe photons involved. The problem is that the wave vectors cannot be made to match without a great deal of effort, or at least some clever arrangement has to be made - a special geometry, or crystal arrangement. The whole business is called phase matching and an inspection ofthe state-of-the-art today, reveals the subject to be in an advanced state.
Publisher: Springer Science & Business Media
ISBN: 9400708505
Category : Science
Languages : en
Pages : 491
Book Description
Although it took some time to establish the word, photonics is both widely accepted and used throughout the world and a major area of activity concerns nonlinear materials. In these the nonlinearity mainly arises from second-order or third-order nonlinear optical processes. A restriction is that second-order processes only occur in media that do not possess a centre of symmetry. Optical fibres, on the other hand, being made of silica glass, created by fusing SiO molecules, are made of material with a centre of z symmetry, so the bulk of all processes are governed by third-order nonlinearity. Indeed, optical fibre nonlinearities have been extensively studied for the last thirty years and can be truly hailed as a success story of nonlinear optics. In fact, the fabrication ofsuch fibres, and the exploitation oftheir nonlinearity, is in an advanced stage - not least being their capacity to sustain envelope solitons. What then ofsecond-order nonlinearity? This is also well-known for its connection to second-harmonic generation. It is an immediate concern, however, to understand how waves can mix and conserve both energy and momentum ofthe photons involved. The problem is that the wave vectors cannot be made to match without a great deal of effort, or at least some clever arrangement has to be made - a special geometry, or crystal arrangement. The whole business is called phase matching and an inspection ofthe state-of-the-art today, reveals the subject to be in an advanced state.
Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems
Author: M. Reza Rahimi Tabar
Publisher: Springer
ISBN: 3030184722
Category : Science
Languages : en
Pages : 290
Book Description
This book focuses on a central question in the field of complex systems: Given a fluctuating (in time or space), uni- or multi-variant sequentially measured set of experimental data (even noisy data), how should one analyse non-parametrically the data, assess underlying trends, uncover characteristics of the fluctuations (including diffusion and jump contributions), and construct a stochastic evolution equation? Here, the term "non-parametrically" exemplifies that all the functions and parameters of the constructed stochastic evolution equation can be determined directly from the measured data. The book provides an overview of methods that have been developed for the analysis of fluctuating time series and of spatially disordered structures. Thanks to its feasibility and simplicity, it has been successfully applied to fluctuating time series and spatially disordered structures of complex systems studied in scientific fields such as physics, astrophysics, meteorology, earth science, engineering, finance, medicine and the neurosciences, and has led to a number of important results. The book also includes the numerical and analytical approaches to the analyses of complex time series that are most common in the physical and natural sciences. Further, it is self-contained and readily accessible to students, scientists, and researchers who are familiar with traditional methods of mathematics, such as ordinary, and partial differential equations. The codes for analysing continuous time series are available in an R package developed by the research group Turbulence, Wind energy and Stochastic (TWiSt) at the Carl von Ossietzky University of Oldenburg under the supervision of Prof. Dr. Joachim Peinke. This package makes it possible to extract the (stochastic) evolution equation underlying a set of data or measurements.
Publisher: Springer
ISBN: 3030184722
Category : Science
Languages : en
Pages : 290
Book Description
This book focuses on a central question in the field of complex systems: Given a fluctuating (in time or space), uni- or multi-variant sequentially measured set of experimental data (even noisy data), how should one analyse non-parametrically the data, assess underlying trends, uncover characteristics of the fluctuations (including diffusion and jump contributions), and construct a stochastic evolution equation? Here, the term "non-parametrically" exemplifies that all the functions and parameters of the constructed stochastic evolution equation can be determined directly from the measured data. The book provides an overview of methods that have been developed for the analysis of fluctuating time series and of spatially disordered structures. Thanks to its feasibility and simplicity, it has been successfully applied to fluctuating time series and spatially disordered structures of complex systems studied in scientific fields such as physics, astrophysics, meteorology, earth science, engineering, finance, medicine and the neurosciences, and has led to a number of important results. The book also includes the numerical and analytical approaches to the analyses of complex time series that are most common in the physical and natural sciences. Further, it is self-contained and readily accessible to students, scientists, and researchers who are familiar with traditional methods of mathematics, such as ordinary, and partial differential equations. The codes for analysing continuous time series are available in an R package developed by the research group Turbulence, Wind energy and Stochastic (TWiSt) at the Carl von Ossietzky University of Oldenburg under the supervision of Prof. Dr. Joachim Peinke. This package makes it possible to extract the (stochastic) evolution equation underlying a set of data or measurements.
Nonlinear Optical Waves
Author: A.I. Maimistov
Publisher: Springer Science & Business Media
ISBN: 9401724482
Category : Science
Languages : en
Pages : 668
Book Description
A non-linear wave is one of the fundamental objects of nature. They are inherent to aerodynamics and hydrodynamics, solid state physics and plasma physics, optics and field theory, chemistry reaction kinetics and population dynamics, nuclear physics and gravity. All non-linear waves can be divided into two parts: dispersive waves and dissipative ones. The history of investigation of these waves has been lasting about two centuries. In 1834 J. S. Russell discovered the extraordinary type of waves without the dispersive broadening. In 1965 N. J. Zabusky and M. D. Kruskal found that the Korteweg-de Vries equation has solutions of the solitary wave form. This solitary wave demonstrates the particle-like properties, i. e. , stability under propagation and the elastic interaction under collision of the solitary waves. These waves were named solitons. In succeeding years there has been a great deal of progress in understanding of soliton nature. Now solitons have become the primary components in many important problems of nonlinear wave dynamics. It should be noted that non-linear optics is the field, where all soliton features are exhibited to a great extent. This book had been designed as the tutorial to the theory of non-linear waves in optics. The first version was projected as the book covering all the problems in this field, both analytical and numerical methods, and results as well. However, it became evident in the process of work that this was not a real task.
Publisher: Springer Science & Business Media
ISBN: 9401724482
Category : Science
Languages : en
Pages : 668
Book Description
A non-linear wave is one of the fundamental objects of nature. They are inherent to aerodynamics and hydrodynamics, solid state physics and plasma physics, optics and field theory, chemistry reaction kinetics and population dynamics, nuclear physics and gravity. All non-linear waves can be divided into two parts: dispersive waves and dissipative ones. The history of investigation of these waves has been lasting about two centuries. In 1834 J. S. Russell discovered the extraordinary type of waves without the dispersive broadening. In 1965 N. J. Zabusky and M. D. Kruskal found that the Korteweg-de Vries equation has solutions of the solitary wave form. This solitary wave demonstrates the particle-like properties, i. e. , stability under propagation and the elastic interaction under collision of the solitary waves. These waves were named solitons. In succeeding years there has been a great deal of progress in understanding of soliton nature. Now solitons have become the primary components in many important problems of nonlinear wave dynamics. It should be noted that non-linear optics is the field, where all soliton features are exhibited to a great extent. This book had been designed as the tutorial to the theory of non-linear waves in optics. The first version was projected as the book covering all the problems in this field, both analytical and numerical methods, and results as well. However, it became evident in the process of work that this was not a real task.
Contemporary Nonlinear Optics
Author: Robert Boyd
Publisher: Academic Press
ISBN: 0323148204
Category : Science
Languages : en
Pages : 494
Book Description
Contemporary Nonlinear Optics discusses the different activities in the field of nonlinear optics. The book is comprised of 10 chapters. Chapter 1 presents a description of the field of nonlinear guided-wave optics. Chapter 2 surveys a new branch of nonlinear optics under the heading optical solitons. Chapter 3 reviews recent progress in the field of optical phase conjugation. Chapter 4 discusses ultrafast nonlinear optics, a field that is growing rapidly with the ability of generating and controlling femtosecond optical pulses. Chapter 5 examines a branch of nonlinear optics that may be termed nonlinear quantum optics. Chapter 6 reviews the new field of photorefractive adaptive neural networks. Chapter 7 presents a discussion of recent successes in the development of nonlinear optical media based on organic materials. Chapter 8 reviews the field of nonlinear optics in quantum confined structures. Chapter 9 reviews the field of nonlinear laser spectroscopy, with emphasis on advances made during the 1980s. Finally, Chapter 10 reviews the field of nonlinear optical dynamics by considering nonlinear optical systems that exhibit temporal, spatial, or spatio-temporal instabilities. This book is a valuable source for physicists and other scientists interested in optical systems and neural networks.
Publisher: Academic Press
ISBN: 0323148204
Category : Science
Languages : en
Pages : 494
Book Description
Contemporary Nonlinear Optics discusses the different activities in the field of nonlinear optics. The book is comprised of 10 chapters. Chapter 1 presents a description of the field of nonlinear guided-wave optics. Chapter 2 surveys a new branch of nonlinear optics under the heading optical solitons. Chapter 3 reviews recent progress in the field of optical phase conjugation. Chapter 4 discusses ultrafast nonlinear optics, a field that is growing rapidly with the ability of generating and controlling femtosecond optical pulses. Chapter 5 examines a branch of nonlinear optics that may be termed nonlinear quantum optics. Chapter 6 reviews the new field of photorefractive adaptive neural networks. Chapter 7 presents a discussion of recent successes in the development of nonlinear optical media based on organic materials. Chapter 8 reviews the field of nonlinear optics in quantum confined structures. Chapter 9 reviews the field of nonlinear laser spectroscopy, with emphasis on advances made during the 1980s. Finally, Chapter 10 reviews the field of nonlinear optical dynamics by considering nonlinear optical systems that exhibit temporal, spatial, or spatio-temporal instabilities. This book is a valuable source for physicists and other scientists interested in optical systems and neural networks.
Quantum Theory from a Nonlinear Perspective
Author: Dieter Schuch
Publisher: Springer
ISBN: 3319655949
Category : Science
Languages : en
Pages : 261
Book Description
This book provides a unique survey displaying the power of Riccati equations to describe reversible and irreversible processes in physics and, in particular, quantum physics. Quantum mechanics is supposedly linear, invariant under time-reversal, conserving energy and, in contrast to classical theories, essentially based on the use of complex quantities. However, on a macroscopic level, processes apparently obey nonlinear irreversible evolution equations and dissipate energy. The Riccati equation, a nonlinear equation that can be linearized, has the potential to link these two worlds when applied to complex quantities. The nonlinearity can provide information about the phase-amplitude correlations of the complex quantities that cannot be obtained from the linearized form. As revealed in this wide ranging treatment, Riccati equations can also be found in many diverse fields of physics from Bose-Einstein-condensates to cosmology. The book will appeal to graduate students and theoretical physicists interested in a consistent mathematical description of physical laws.
Publisher: Springer
ISBN: 3319655949
Category : Science
Languages : en
Pages : 261
Book Description
This book provides a unique survey displaying the power of Riccati equations to describe reversible and irreversible processes in physics and, in particular, quantum physics. Quantum mechanics is supposedly linear, invariant under time-reversal, conserving energy and, in contrast to classical theories, essentially based on the use of complex quantities. However, on a macroscopic level, processes apparently obey nonlinear irreversible evolution equations and dissipate energy. The Riccati equation, a nonlinear equation that can be linearized, has the potential to link these two worlds when applied to complex quantities. The nonlinearity can provide information about the phase-amplitude correlations of the complex quantities that cannot be obtained from the linearized form. As revealed in this wide ranging treatment, Riccati equations can also be found in many diverse fields of physics from Bose-Einstein-condensates to cosmology. The book will appeal to graduate students and theoretical physicists interested in a consistent mathematical description of physical laws.