Nonlinear Partial Differential Equations for Future Applications

Nonlinear Partial Differential Equations for Future Applications PDF Author: Shigeaki Koike
Publisher: Springer Nature
ISBN: 9813348224
Category : Mathematics
Languages : en
Pages : 267

Get Book Here

Book Description
This volume features selected, original, and peer-reviewed papers on topics from a series of workshops on Nonlinear Partial Differential Equations for Future Applications that were held in 2017 at Tohoku University in Japan. The contributions address an abstract maximal regularity with applications to parabolic equations, stability, and bifurcation for viscous compressible Navier–Stokes equations, new estimates for a compressible Gross–Pitaevskii–Navier–Stokes system, singular limits for the Keller–Segel system in critical spaces, the dynamic programming principle for stochastic optimal control, two kinds of regularity machineries for elliptic obstacle problems, and new insight on topology of nodal sets of high-energy eigenfunctions of the Laplacian. This book aims to exhibit various theories and methods that appear in the study of nonlinear partial differential equations.

Nonlinear Partial Differential Equations for Future Applications

Nonlinear Partial Differential Equations for Future Applications PDF Author: Shigeaki Koike
Publisher: Springer Nature
ISBN: 9813348224
Category : Mathematics
Languages : en
Pages : 267

Get Book Here

Book Description
This volume features selected, original, and peer-reviewed papers on topics from a series of workshops on Nonlinear Partial Differential Equations for Future Applications that were held in 2017 at Tohoku University in Japan. The contributions address an abstract maximal regularity with applications to parabolic equations, stability, and bifurcation for viscous compressible Navier–Stokes equations, new estimates for a compressible Gross–Pitaevskii–Navier–Stokes system, singular limits for the Keller–Segel system in critical spaces, the dynamic programming principle for stochastic optimal control, two kinds of regularity machineries for elliptic obstacle problems, and new insight on topology of nodal sets of high-energy eigenfunctions of the Laplacian. This book aims to exhibit various theories and methods that appear in the study of nonlinear partial differential equations.

Nonlinear Partial Differential Equations for Future Applications

Nonlinear Partial Differential Equations for Future Applications PDF Author: Shigeaki Koike
Publisher: Springer
ISBN: 9789813348240
Category : Mathematics
Languages : en
Pages : 261

Get Book Here

Book Description
This volume features selected, original, and peer-reviewed papers on topics from a series of workshops on Nonlinear Partial Differential Equations for Future Applications that were held in 2017 at Tohoku University in Japan. The contributions address an abstract maximal regularity with applications to parabolic equations, stability, and bifurcation for viscous compressible Navier–Stokes equations, new estimates for a compressible Gross–Pitaevskii–Navier–Stokes system, singular limits for the Keller–Segel system in critical spaces, the dynamic programming principle for stochastic optimal control, two kinds of regularity machineries for elliptic obstacle problems, and new insight on topology of nodal sets of high-energy eigenfunctions of the Laplacian. This book aims to exhibit various theories and methods that appear in the study of nonlinear partial differential equations.

Fourier Analysis and Nonlinear Partial Differential Equations

Fourier Analysis and Nonlinear Partial Differential Equations PDF Author: Hajer Bahouri
Publisher: Springer Science & Business Media
ISBN: 3642168302
Category : Mathematics
Languages : en
Pages : 530

Get Book Here

Book Description
In recent years, the Fourier analysis methods have expereinced a growing interest in the study of partial differential equations. In particular, those techniques based on the Littlewood-Paley decomposition have proved to be very efficient for the study of evolution equations. The present book aims at presenting self-contained, state- of- the- art models of those techniques with applications to different classes of partial differential equations: transport, heat, wave and Schrödinger equations. It also offers more sophisticated models originating from fluid mechanics (in particular the incompressible and compressible Navier-Stokes equations) or general relativity. It is either directed to anyone with a good undergraduate level of knowledge in analysis or useful for experts who are eager to know the benefit that one might gain from Fourier analysis when dealing with nonlinear partial differential equations.

Numerical Continuation and Bifurcation in Nonlinear PDEs

Numerical Continuation and Bifurcation in Nonlinear PDEs PDF Author: Hannes Uecker
Publisher: SIAM
ISBN: 1611976618
Category : Mathematics
Languages : en
Pages : 380

Get Book Here

Book Description
This book provides a hands-on approach to numerical continuation and bifurcation for nonlinear PDEs in 1D, 2D, and 3D. Partial differential equations (PDEs) are the main tool to describe spatially and temporally extended systems in nature. PDEs usually come with parameters, and the study of the parameter dependence of their solutions is an important task. Letting one parameter vary typically yields a branch of solutions, and at special parameter values, new branches may bifurcate. After a concise review of some analytical background and numerical methods, the author explains the free MATLAB package pde2path by using a large variety of examples with demo codes that can be easily adapted to the reader's given problem. Numerical Continuation and Bifurcation in Nonlinear PDEs will appeal to applied mathematicians and scientists from physics, chemistry, biology, and economics interested in the numerical solution of nonlinear PDEs, particularly the parameter dependence of solutions. It can be used as a supplemental text in courses on nonlinear PDEs and modeling and bifurcation.

An Introduction to Nonlinear Partial Differential Equations

An Introduction to Nonlinear Partial Differential Equations PDF Author: J. David Logan
Publisher: John Wiley & Sons
ISBN: 0470225955
Category : Mathematics
Languages : en
Pages : 416

Get Book Here

Book Description
Praise for the First Edition: "This book is well conceived and well written. The author has succeeded in producing a text on nonlinear PDEs that is not only quite readable but also accessible to students from diverse backgrounds." —SIAM Review A practical introduction to nonlinear PDEs and their real-world applications Now in a Second Edition, this popular book on nonlinear partial differential equations (PDEs) contains expanded coverage on the central topics of applied mathematics in an elementary, highly readable format and is accessible to students and researchers in the field of pure and applied mathematics. This book provides a new focus on the increasing use of mathematical applications in the life sciences, while also addressing key topics such as linear PDEs, first-order nonlinear PDEs, classical and weak solutions, shocks, hyperbolic systems, nonlinear diffusion, and elliptic equations. Unlike comparable books that typically only use formal proofs and theory to demonstrate results, An Introduction to Nonlinear Partial Differential Equations, Second Edition takes a more practical approach to nonlinear PDEs by emphasizing how the results are used, why they are important, and how they are applied to real problems. The intertwining relationship between mathematics and physical phenomena is discovered using detailed examples of applications across various areas such as biology, combustion, traffic flow, heat transfer, fluid mechanics, quantum mechanics, and the chemical reactor theory. New features of the Second Edition also include: Additional intermediate-level exercises that facilitate the development of advanced problem-solving skills New applications in the biological sciences, including age-structure, pattern formation, and the propagation of diseases An expanded bibliography that facilitates further investigation into specialized topics With individual, self-contained chapters and a broad scope of coverage that offers instructors the flexibility to design courses to meet specific objectives, An Introduction to Nonlinear Partial Differential Equations, Second Edition is an ideal text for applied mathematics courses at the upper-undergraduate and graduate levels. It also serves as a valuable resource for researchers and professionals in the fields of mathematics, biology, engineering, and physics who would like to further their knowledge of PDEs.

Nonlinear Partial Differential Equations for Scientists and Engineers

Nonlinear Partial Differential Equations for Scientists and Engineers PDF Author: Lokenath Debnath
Publisher: Springer Science & Business Media
ISBN: 0817682651
Category : Mathematics
Languages : en
Pages : 872

Get Book Here

Book Description
The revised and enlarged third edition of this successful book presents a comprehensive and systematic treatment of linear and nonlinear partial differential equations and their varied and updated applications. In an effort to make the book more useful for a diverse readership, updated modern examples of applications are chosen from areas of fluid dynamics, gas dynamics, plasma physics, nonlinear dynamics, quantum mechanics, nonlinear optics, acoustics, and wave propagation. Nonlinear Partial Differential Equations for Scientists and Engineers, Third Edition, improves on an already highly complete and accessible resource for graduate students and professionals in mathematics, physics, science, and engineering. It may be used to great effect as a course textbook, research reference, or self-study guide.

Nonlinear Partial Differential Equations in Engineering and Applied Science

Nonlinear Partial Differential Equations in Engineering and Applied Science PDF Author: Robert L. Sternberg
Publisher: CRC Press
ISBN: 9780824769963
Category : Mathematics
Languages : en
Pages : 512

Get Book Here

Book Description
In this volume are twenty-eight papers from the Conference on Nonlinear Partial Differential Equationsin Engineering and Applied Science, sponsored by the Office of Naval Research and held at the Universityof Rhode Island in June, 1979. Included are contributions from an international group of distinguishedmathematicians, scientists, and engineers coming from a wide variety of disciplines and having a commoninterest in the application of mathematics, particularly nonlinear partial differential equations, to realworld problems.The subject matter ranges from almost purely mathematical topics in numerical analysis and bifurcationtheory to a host of practical applications that involve nonlinear partial differential equations, suchas fluid dynamics, nonlinear waves, elasticity, viscoelasticity, hyperelasticity, solitons, metallurgy, shocklessairfoil design, quantum fields, and Darcy's law on flows in porous media.Non/inear Partial Differential Equations in Engineering and Applied Science focuses on a variety oftopics of specialized, contemporary concern to mathematicians, physical and biological scientists, andengineers who work with phenomena that can be described by nonlinear partial differential equations.

Nonlinear Partial Differential Equations

Nonlinear Partial Differential Equations PDF Author: W. F. Ames
Publisher: Academic Press
ISBN: 1483221504
Category : Mathematics
Languages : en
Pages : 335

Get Book Here

Book Description
Nonlinear Partial Differential Equations: A Symposium on Methods of Solution is a collection of papers presented at the seminar on methods of solution for nonlinear partial differential equations, held at the University of Delaware, Newark, Delaware on December 27-29, 1965. The sessions are divided into four Symposia: Analytic Methods, Approximate Methods, Numerical Methods, and Applications. Separating 19 lectures into chapters, this book starts with a presentation of the methods of similarity analysis, particularly considering the merits, advantages and disadvantages of the methods. The subsequent chapters describe the fundamental ideas behind the methods for the solution of partial differential equation derived from the theory of dynamic programming and from finite systems of ordinary differential equations. These topics are followed by reviews of the principles to the lubrication approximation and compressible boundary-layer flow computation. The discussion then shifts to several applications of nonlinear partial differential equations, including in electrical problems, two-phase flow, hydrodynamics, and heat transfer. The remaining chapters cover other solution methods for partial differential equations, such as the synergetic approach. This book will prove useful to applied mathematicians, physicists, and engineers.

Nonlinear and Robust Control of PDE Systems

Nonlinear and Robust Control of PDE Systems PDF Author: Panagiotis D. Christofides
Publisher: Springer Science & Business Media
ISBN: 1461201853
Category : Science
Languages : en
Pages : 262

Get Book Here

Book Description
The interest in control of nonlinear partial differential equation (PDE) sys tems has been triggered by the need to achieve tight distributed control of transport-reaction processes that exhibit highly nonlinear behavior and strong spatial variations. Drawing from recent advances in dynamics of PDE systems and nonlinear control theory, control of nonlinear PDEs has evolved into a very active research area of systems and control. This book the first of its kind- presents general methods for the synthesis of nonlinear and robust feedback controllers for broad classes of nonlinear PDE sys tems and illustrates their applications to transport-reaction processes of industrial interest. Specifically, our attention focuses on quasi-linear hyperbolic and parabolic PDE systems for which the manipulated inputs and measured and controlled outputs are distributed in space and bounded. We use geometric and Lyapunov-based control techniques to synthesize nonlinear and robust controllers that use a finite number of measurement sensors and control actuators to achieve stabilization of the closed-loop system, output track ing, and attenuation of the effect of model uncertainty. The controllers are successfully applied to numerous convection-reaction and diffusion-reaction processes, including a rapid thermal chemical vapor deposition reactor and a Czochralski crystal growth process. The book includes comparisons of the proposed nonlinear and robust control methods with other approaches and discussions of practical implementation issues.

Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics

Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics PDF Author: Victor A. Galaktionov
Publisher: CRC Press
ISBN: 9781584886631
Category : Mathematics
Languages : en
Pages : 538

Get Book Here

Book Description
Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics is the first book to provide a systematic construction of exact solutions via linear invariant subspaces for nonlinear differential operators. Acting as a guide to nonlinear evolution equations and models from physics and mechanics, the book focuses on the existence of new exact solutions on linear invariant subspaces for nonlinear operators and their crucial new properties. This practical reference deals with various partial differential equations (PDEs) and models that exhibit some common nonlinear invariant features. It begins with classical as well as more recent examples of solutions on invariant subspaces. In the remainder of the book, the authors develop several techniques for constructing exact solutions of various nonlinear PDEs, including reaction-diffusion and gas dynamics models, thin-film and Kuramoto-Sivashinsky equations, nonlinear dispersion (compacton) equations, KdV-type and Harry Dym models, quasilinear magma equations, and Green-Naghdi equations. Using exact solutions, they describe the evolution properties of blow-up or extinction phenomena, finite interface propagation, and the oscillatory, changing sign behavior of weak solutions near interfaces for nonlinear PDEs of various types and orders. The techniques surveyed in Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics serve as a preliminary introduction to the general theory of nonlinear evolution PDEs of different orders and types.