Nonlinear Optimization Applications Using the GAMS Technology

Nonlinear Optimization Applications Using the GAMS Technology PDF Author: Neculai Andrei
Publisher: Springer Science & Business Media
ISBN: 1461467977
Category : Mathematics
Languages : en
Pages : 356

Get Book Here

Book Description
Here is a collection of nonlinear optimization applications from the real world, expressed in the General Algebraic Modeling System (GAMS). The concepts are presented so that the reader can quickly modify and update them to represent real-world situations.

Nonlinear Optimization Applications Using the GAMS Technology

Nonlinear Optimization Applications Using the GAMS Technology PDF Author: Neculai Andrei
Publisher: Springer Science & Business Media
ISBN: 1461467977
Category : Mathematics
Languages : en
Pages : 356

Get Book Here

Book Description
Here is a collection of nonlinear optimization applications from the real world, expressed in the General Algebraic Modeling System (GAMS). The concepts are presented so that the reader can quickly modify and update them to represent real-world situations.

Continuous Nonlinear Optimization for Engineering Applications in GAMS Technology

Continuous Nonlinear Optimization for Engineering Applications in GAMS Technology PDF Author: Neculai Andrei
Publisher: Springer
ISBN: 3319583565
Category : Mathematics
Languages : en
Pages : 514

Get Book Here

Book Description
This book presents the theoretical details and computational performances of algorithms used for solving continuous nonlinear optimization applications imbedded in GAMS. Aimed toward scientists and graduate students who utilize optimization methods to model and solve problems in mathematical programming, operations research, business, engineering, and industry, this book enables readers with a background in nonlinear optimization and linear algebra to use GAMS technology to understand and utilize its important capabilities to optimize algorithms for modeling and solving complex, large-scale, continuous nonlinear optimization problems or applications. Beginning with an overview of constrained nonlinear optimization methods, this book moves on to illustrate key aspects of mathematical modeling through modeling technologies based on algebraically oriented modeling languages. Next, the main feature of GAMS, an algebraically oriented language that allows for high-level algebraic representation of mathematical optimization models, is introduced to model and solve continuous nonlinear optimization applications. More than 15 real nonlinear optimization applications in algebraic and GAMS representation are presented which are used to illustrate the performances of the algorithms described in this book. Theoretical and computational results, methods, and techniques effective for solving nonlinear optimization problems, are detailed through the algorithms MINOS, KNITRO, CONOPT, SNOPT and IPOPT which work in GAMS technology.

Modern Numerical Nonlinear Optimization

Modern Numerical Nonlinear Optimization PDF Author: Neculai Andrei
Publisher: Springer Nature
ISBN: 3031087208
Category : Mathematics
Languages : en
Pages : 824

Get Book Here

Book Description
This book includes a thorough theoretical and computational analysis of unconstrained and constrained optimization algorithms and combines and integrates the most recent techniques and advanced computational linear algebra methods. Nonlinear optimization methods and techniques have reached their maturity and an abundance of optimization algorithms are available for which both the convergence properties and the numerical performances are known. This clear, friendly, and rigorous exposition discusses the theory behind the nonlinear optimization algorithms for understanding their properties and their convergence, enabling the reader to prove the convergence of his/her own algorithms. It covers cases and computational performances of the most known modern nonlinear optimization algorithms that solve collections of unconstrained and constrained optimization test problems with different structures, complexities, as well as those with large-scale real applications. The book is addressed to all those interested in developing and using new advanced techniques for solving large-scale unconstrained or constrained complex optimization problems. Mathematical programming researchers, theoreticians and practitioners in operations research, practitioners in engineering and industry researchers, as well as graduate students in mathematics, Ph.D. and master in mathematical programming will find plenty of recent information and practical approaches for solving real large-scale optimization problems and applications.

A Derivative-free Two Level Random Search Method for Unconstrained Optimization

A Derivative-free Two Level Random Search Method for Unconstrained Optimization PDF Author: Neculai Andrei
Publisher: Springer Nature
ISBN: 3030685179
Category : Mathematics
Languages : en
Pages : 126

Get Book Here

Book Description
The book is intended for graduate students and researchers in mathematics, computer science, and operational research. The book presents a new derivative-free optimization method/algorithm based on randomly generated trial points in specified domains and where the best ones are selected at each iteration by using a number of rules. This method is different from many other well established methods presented in the literature and proves to be competitive for solving many unconstrained optimization problems with different structures and complexities, with a relative large number of variables. Intensive numerical experiments with 140 unconstrained optimization problems, with up to 500 variables, have shown that this approach is efficient and robust. Structured into 4 chapters, Chapter 1 is introductory. Chapter 2 is dedicated to presenting a two level derivative-free random search method for unconstrained optimization. It is assumed that the minimizing function is continuous, lower bounded and its minimum value is known. Chapter 3 proves the convergence of the algorithm. In Chapter 4, the numerical performances of the algorithm are shown for solving 140 unconstrained optimization problems, out of which 16 are real applications. This shows that the optimization process has two phases: the reduction phase and the stalling one. Finally, the performances of the algorithm for solving a number of 30 large-scale unconstrained optimization problems up to 500 variables are presented. These numerical results show that this approach based on the two level random search method for unconstrained optimization is able to solve a large diversity of problems with different structures and complexities. There are a number of open problems which refer to the following aspects: the selection of the number of trial or the number of the local trial points, the selection of the bounds of the domains where the trial points and the local trial points are randomly generated and a criterion for initiating the line search.

Nonlinear Conjugate Gradient Methods for Unconstrained Optimization

Nonlinear Conjugate Gradient Methods for Unconstrained Optimization PDF Author: Neculai Andrei
Publisher: Springer Nature
ISBN: 3030429504
Category : Mathematics
Languages : en
Pages : 515

Get Book Here

Book Description
Two approaches are known for solving large-scale unconstrained optimization problems—the limited-memory quasi-Newton method (truncated Newton method) and the conjugate gradient method. This is the first book to detail conjugate gradient methods, showing their properties and convergence characteristics as well as their performance in solving large-scale unconstrained optimization problems and applications. Comparisons to the limited-memory and truncated Newton methods are also discussed. Topics studied in detail include: linear conjugate gradient methods, standard conjugate gradient methods, acceleration of conjugate gradient methods, hybrid, modifications of the standard scheme, memoryless BFGS preconditioned, and three-term. Other conjugate gradient methods with clustering the eigenvalues or with the minimization of the condition number of the iteration matrix, are also treated. For each method, the convergence analysis, the computational performances and the comparisons versus other conjugate gradient methods are given. The theory behind the conjugate gradient algorithms presented as a methodology is developed with a clear, rigorous, and friendly exposition; the reader will gain an understanding of their properties and their convergence and will learn to develop and prove the convergence of his/her own methods. Numerous numerical studies are supplied with comparisons and comments on the behavior of conjugate gradient algorithms for solving a collection of 800 unconstrained optimization problems of different structures and complexities with the number of variables in the range [1000,10000]. The book is addressed to all those interested in developing and using new advanced techniques for solving unconstrained optimization complex problems. Mathematical programming researchers, theoreticians and practitioners in operations research, practitioners in engineering and industry researchers, as well as graduate students in mathematics, Ph.D. and master students in mathematical programming, will find plenty of information and practical applications for solving large-scale unconstrained optimization problems and applications by conjugate gradient methods.

Power System Optimization Modeling in GAMS

Power System Optimization Modeling in GAMS PDF Author: Alireza Soroudi
Publisher: Springer
ISBN: 3319623508
Category : Technology & Engineering
Languages : en
Pages : 309

Get Book Here

Book Description
This unique book describes how the General Algebraic Modeling System (GAMS) can be used to solve various power system operation and planning optimization problems. This book is the first of its kind to provide readers with a comprehensive reference that includes the solution codes for basic/advanced power system optimization problems in GAMS, a computationally efficient tool for analyzing optimization problems in power and energy systems. The book covers theoretical background as well as the application examples and test case studies. It is a suitable reference for dedicated and general audiences including power system professionals as well as researchers and developers from the energy sector and electrical power engineering community and will be helpful to undergraduate and graduate students.

GAMS

GAMS PDF Author: Anthony Brooke
Publisher: Course Technology
ISBN:
Category : Computers
Languages : en
Pages : 314

Get Book Here

Book Description


Global Optimization in Engineering Design

Global Optimization in Engineering Design PDF Author: Ignacio E. Grossmann
Publisher: Springer Science & Business Media
ISBN: 1475753314
Category : Computers
Languages : en
Pages : 390

Get Book Here

Book Description
Mathematical Programming has been of significant interest and relevance in engineering, an area that is very rich in challenging optimization problems. In particular, many design and operational problems give rise to nonlinear and mixed-integer nonlinear optimization problems whose modeling and solu tion is often nontrivial. Furthermore, with the increased computational power and development of advanced analysis (e. g. , process simulators, finite element packages) and modeling systems (e. g. , GAMS, AMPL, SPEEDUP, ASCEND, gPROMS), the size and complexity of engineering optimization models is rapidly increasing. While the application of efficient local solvers (nonlinear program ming algorithms) has become widespread, a major limitation is that there is often no guarantee that the solutions that are generated correspond to global optima. In some cases finding a local solution might be adequate, but in others it might mean incurring a significant cost penalty, or even worse, getting an incorrect solution to a physical problem. Thus, the need for finding global optima in engineering is a very real one. It is the purpose of this monograph to present recent developments of tech niques and applications of deterministic approaches to global optimization in engineering. The present monograph is heavily represented by chemical engi neers; and to a large extent this is no accident. The reason is that mathematical programming is an active and vibrant area of research in chemical engineering. This trend has existed for about 15 years.

Optimization and Approximation

Optimization and Approximation PDF Author: Pablo Pedregal
Publisher: Springer
ISBN: 3319648438
Category : Mathematics
Languages : en
Pages : 261

Get Book Here

Book Description
This book provides a basic, initial resource, introducing science and engineering students to the field of optimization. It covers three main areas: mathematical programming, calculus of variations and optimal control, highlighting the ideas and concepts and offering insights into the importance of optimality conditions in each area. It also systematically presents affordable approximation methods. Exercises at various levels have been included to support the learning process.

Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming

Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming PDF Author: Mohit Tawarmalani
Publisher: Springer Science & Business Media
ISBN: 1475735324
Category : Mathematics
Languages : en
Pages : 492

Get Book Here

Book Description
Interest in constrained optimization originated with the simple linear pro gramming model since it was practical and perhaps the only computationally tractable model at the time. Constrained linear optimization models were soon adopted in numerous application areas and are perhaps the most widely used mathematical models in operations research and management science at the time of this writing. Modelers have, however, found the assumption of linearity to be overly restrictive in expressing the real-world phenomena and problems in economics, finance, business, communication, engineering design, computational biology, and other areas that frequently demand the use of nonlinear expressions and discrete variables in optimization models. Both of these extensions of the linear programming model are NP-hard, thus representing very challenging problems. On the brighter side, recent advances in algorithmic and computing technology make it possible to re visit these problems with the hope of solving practically relevant problems in reasonable amounts of computational time. Initial attempts at solving nonlinear programs concentrated on the de velopment of local optimization methods guaranteeing globality under the assumption of convexity. On the other hand, the integer programming liter ature has concentrated on the development of methods that ensure global optima. The aim of this book is to marry the advancements in solving nonlinear and integer programming models and to develop new results in the more general framework of mixed-integer nonlinear programs (MINLPs) with the goal of devising practically efficient global optimization algorithms for MINLPs.