Nonlinear Methods in Numerical Analysis

Nonlinear Methods in Numerical Analysis PDF Author: A. Cuyt
Publisher: Elsevier
ISBN: 0080872476
Category : Computers
Languages : en
Pages : 289

Get Book Here

Book Description
While most textbooks on Numerical Analysis discuss linear techniques for the solution of various numerical problems, this book introduces and illustrates nonlinear methods. It presents several nonlinear techniques resulting mainly from the use of Padé approximants and rational interpolants.

Nonlinear Methods in Numerical Analysis

Nonlinear Methods in Numerical Analysis PDF Author: A. Cuyt
Publisher: Elsevier
ISBN: 0080872476
Category : Computers
Languages : en
Pages : 289

Get Book Here

Book Description
While most textbooks on Numerical Analysis discuss linear techniques for the solution of various numerical problems, this book introduces and illustrates nonlinear methods. It presents several nonlinear techniques resulting mainly from the use of Padé approximants and rational interpolants.

Nonlinear Approximation Theory

Nonlinear Approximation Theory PDF Author: Dietrich Braess
Publisher: Springer Science & Business Media
ISBN: 3642616097
Category : Mathematics
Languages : en
Pages : 305

Get Book Here

Book Description
The first investigations of nonlinear approximation problems were made by P.L. Chebyshev in the last century, and the entire theory of uniform approxima tion is strongly connected with his name. By making use of his ideas, the theories of best uniform approximation by rational functions and by polynomials were developed over the years in an almost unified framework. The difference between linear and rational approximation and its implications first became apparent in the 1960's. At roughly the same time other approaches to nonlinear approximation were also developed. The use of new tools, such as nonlinear functional analysis and topological methods, showed that linearization is not sufficient for a complete treatment of nonlinear families. In particular, the application of global analysis and the consideration of flows on the family of approximating functions intro duced ideas which were previously unknown in approximation theory. These were and still are important in many branches of analysis. On the other hand, methods developed for nonlinear approximation prob lems can often be successfully applied to problems which belong to or arise from linear approximation. An important example is the solution of moment problems via rational approximation. Best quadrature formulae or the search for best linear spaces often leads to the consideration of spline functions with free nodes. The most famous problem of this kind, namely best interpolation by poly nomials, is treated in the appendix of this book.

Pade Approximants

Pade Approximants PDF Author: George Allen Baker
Publisher: Cambridge University Press
ISBN: 0521450071
Category : Mathematics
Languages : en
Pages : 762

Get Book Here

Book Description
The first edition of this book was reviewed in 1982 as "the most extensive treatment of Pade approximants actually available." This second edition has been thoroughly updated, with a substantial new chapter on multiseries approximants. Applications to statistical mechanics and critical phenomena are extensively covered, and there are newly extended sections devoted to circuit design, matrix Pade approximation, and computational methods. This succinct and straightforward treatment will appeal to scientists, engineers, and mathematicians alike.

Mathematical Constants

Mathematical Constants PDF Author: Steven R. Finch
Publisher: Cambridge University Press
ISBN: 9780521818056
Category : Mathematics
Languages : en
Pages : 634

Get Book Here

Book Description
Steven Finch provides 136 essays, each devoted to a mathematical constant or a class of constants, from the well known to the highly exotic. This book is helpful both to readers seeking information about a specific constant, and to readers who desire a panoramic view of all constants coming from a particular field, for example, combinatorial enumeration or geometric optimization. Unsolved problems appear virtually everywhere as well. This work represents an outstanding scholarly attempt to bring together all significant mathematical constants in one place.

Haar Series and Linear Operators

Haar Series and Linear Operators PDF Author: I. Novikov
Publisher: Springer Science & Business Media
ISBN: 9401717265
Category : Mathematics
Languages : en
Pages : 228

Get Book Here

Book Description
In 1909 Alfred Haar introduced into analysis a remarkable system which bears his name. The Haar system is a complete orthonormal system on [0,1] and the Fourier-Haar series for arbitrary continuous function converges uniformly to this function. This volume is devoted to the investigation of the Haar system from the operator theory point of view. The main subjects treated are: classical results on unconditional convergence of the Haar series in modern presentation; Fourier-Haar coefficients; reproducibility; martingales; monotone bases in rearrangement invariant spaces; rearrangements and multipliers with respect to the Haar system; subspaces generated by subsequences of the Haar system; the criterion of equivalence of the Haar and Franklin systems. Audience: This book will be of interest to graduate students and researchers whose work involves functional analysis and operator theory.

Subdifferentials

Subdifferentials PDF Author: A.G. Kusraev
Publisher: Springer Science & Business Media
ISBN: 9401102651
Category : Mathematics
Languages : en
Pages : 415

Get Book Here

Book Description
The subject of the present book is sub differential calculus. The main source of this branch of functional analysis is the theory of extremal problems. For a start, we explicate the origin and statement of the principal problems of sub differential calculus. To this end, consider an abstract minimization problem formulated as follows: x E X, f(x) --+ inf. Here X is a vector space and f : X --+ iR is a numeric function taking possibly infinite values. In these circumstances, we are usually interested in the quantity inf f( x), the value of the problem, and in a solution or an optimum plan of the problem (i. e. , such an x that f(x) = inf f(X», if the latter exists. It is a rare occurrence to solve an arbitrary problem explicitly, i. e. to exhibit the value of the problem and one of its solutions. In this respect it becomes necessary to simplify the initial problem by reducing it to somewhat more manageable modifications formulated with the details of the structure of the objective function taken in due account. The conventional hypothesis presumed in attempts at theoretically approaching the reduction sought is as follows. Introducing an auxiliary function 1, one considers the next problem: x EX, f(x) -l(x) --+ inf. Furthermore, the new problem is assumed to be as complicated as the initial prob lem provided that 1 is a linear functional over X, i. e.

Ramified Integrals, Singularities and Lacunas

Ramified Integrals, Singularities and Lacunas PDF Author: V.A. Vassiliev
Publisher: Springer Science & Business Media
ISBN: 9401102139
Category : Mathematics
Languages : en
Pages : 306

Get Book Here

Book Description
Solutions to many problems of these theories are treated. Subjects include the proof of multidimensional analogues of Newton's theorem on the nonintegrability of ovals; extension of the proofs for the theorems of Newton, Ivory, Arnold and Givental on potentials of algebraic surfaces. Also, it is discovered for which d and n the potentials of degree d hyperbolic surfaces in [actual symbol not reproducible] are algebraic outside the surfaces; the equivalence of local regularity (the so-called sharpness), of fundamental solutions of hyperbolic PDEs and the topological Petrovskii-Atiyah-Bott-Garding condition is proved, and the geometrical characterization of domains of sharpness close to simple singularities of wave fronts is considered; a 'stratified' version of the Picard-Lefschetz formula is proved, and an algorithm enumerating topologically distinct Morsifications of real function singularities is given.

Superanalysis

Superanalysis PDF Author: Andrei Y. Khrennikov
Publisher: Springer Science & Business Media
ISBN: 9401146098
Category : Mathematics
Languages : en
Pages : 359

Get Book Here

Book Description
defined as elements of Grassmann algebra (an algebra with anticom muting generators). The derivatives of these elements with respect to anticommuting generators were defined according to algebraic laws, and nothing like Newton's analysis arose when Martin's approach was used. Later, during the next twenty years, the algebraic apparatus de veloped by Martin was used in all mathematical works. We must point out here the considerable contribution made by F. A. Berezin, G 1. Kac, D. A. Leites, B. Kostant. In their works, they constructed a new division of mathematics which can naturally be called an algebraic superanalysis. Following the example of physicists, researchers called the investigations carried out with the use of commuting and anticom muting coordinates supermathematics; all mathematical objects that appeared in supermathematics were called superobjects, although, of course, there is nothing "super" in supermathematics. However, despite the great achievements in algebraic superanaly sis, this formalism could not be regarded as a generalization to the case of commuting and anticommuting variables from the ordinary Newton analysis. What is more, Schwinger's formalism was still used in practically all physical works, on an intuitive level, and physicists regarded functions of anticommuting variables as "real functions" == maps of sets and not as elements of Grassmann algebras. In 1974, Salam and Strathdee proposed a very apt name for a set of super points. They called this set a superspace.

Boolean Valued Analysis

Boolean Valued Analysis PDF Author: A.G. Kusraev
Publisher: Springer Science & Business Media
ISBN: 9401144435
Category : Mathematics
Languages : en
Pages : 345

Get Book Here

Book Description
Boolean valued analysis is a technique for studying properties of an arbitrary mathematical object by comparing its representations in two different set-theoretic models whose construction utilises principally distinct Boolean algebras. The use of two models for studying a single object is a characteristic of the so-called non-standard methods of analysis. Application of Boolean valued models to problems of analysis rests ultimately on the procedures of ascending and descending, the two natural functors acting between a new Boolean valued universe and the von Neumann universe. This book demonstrates the main advantages of Boolean valued analysis which provides the tools for transforming, for example, function spaces to subsets of the reals, operators to functionals, and vector-functions to numerical mappings. Boolean valued representations of algebraic systems, Banach spaces, and involutive algebras are examined thoroughly. Audience: This volume is intended for classical analysts seeking powerful new tools, and for model theorists in search of challenging applications of nonstandard models.

Representation of Lie Groups and Special Functions

Representation of Lie Groups and Special Functions PDF Author: N.Ja. Vilenkin
Publisher: Springer Science & Business Media
ISBN: 9401728852
Category : Mathematics
Languages : en
Pages : 518

Get Book Here

Book Description
In 1991-1993 our three-volume book "Representation of Lie Groups and Spe cial Functions" was published. When we started to write that book (in 1983), editors of "Kluwer Academic Publishers" expressed their wish for the book to be of encyclopaedic type on the subject. Interrelations between representations of Lie groups and special functions are very wide. This width can be explained by existence of different types of Lie groups and by richness of the theory of their rep resentations. This is why the book, mentioned above, spread to three big volumes. Influence of representations of Lie groups and Lie algebras upon the theory of special functions is lasting. This theory is developing further and methods of the representation theory are of great importance in this development. When the book "Representation of Lie Groups and Special Functions" ,vol. 1-3, was under preparation, new directions of the theory of special functions, connected with group representations, appeared. New important results were discovered in the traditional directions. This impelled us to write a continuation of our three-volume book on relationship between representations and special functions. The result of our further work is the present book. The three-volume book, published before, was devoted mainly to studying classical special functions and orthogonal polynomials by means of matrix elements, Clebsch-Gordan and Racah coefficients of group representations and to generaliza tions of classical special functions that were dictated by matrix elements of repre sentations.