Author: José C. Pinheiro
Publisher: Springer Science & Business Media
ISBN: 1441903178
Category : Computers
Languages : en
Pages : 538
Book Description
R, linear models, random, fixed, data, analysis, fit.
Mixed-Effects Models in S and S-PLUS
Author: José C. Pinheiro
Publisher: Springer Science & Business Media
ISBN: 1441903178
Category : Computers
Languages : en
Pages : 538
Book Description
R, linear models, random, fixed, data, analysis, fit.
Publisher: Springer Science & Business Media
ISBN: 1441903178
Category : Computers
Languages : en
Pages : 538
Book Description
R, linear models, random, fixed, data, analysis, fit.
Introduction to Population Pharmacokinetic / Pharmacodynamic Analysis with Nonlinear Mixed Effects Models
Author: Joel S. Owen
Publisher: John Wiley & Sons
ISBN: 9780470582299
Category : Medical
Languages : en
Pages : 0
Book Description
This book provides a user-friendly, hands-on introduction to the Nonlinear Mixed Effects Modeling (NONMEM) system, the most powerful tool for pharmacokinetic / pharmacodynamic analysis. • Introduces requisite background to using Nonlinear Mixed Effects Modeling (NONMEM), covering data requirements, model building and evaluation, and quality control aspects • Provides examples of nonlinear modeling concepts and estimation basics with discussion on the model building process and applications of empirical Bayesian estimates in the drug development environment • Includes detailed chapters on data set structure, developing control streams for modeling and simulation, model applications, interpretation of NONMEM output and results, and quality control • Has datasets, programming code, and practice exercises with solutions, available on a supplementary website
Publisher: John Wiley & Sons
ISBN: 9780470582299
Category : Medical
Languages : en
Pages : 0
Book Description
This book provides a user-friendly, hands-on introduction to the Nonlinear Mixed Effects Modeling (NONMEM) system, the most powerful tool for pharmacokinetic / pharmacodynamic analysis. • Introduces requisite background to using Nonlinear Mixed Effects Modeling (NONMEM), covering data requirements, model building and evaluation, and quality control aspects • Provides examples of nonlinear modeling concepts and estimation basics with discussion on the model building process and applications of empirical Bayesian estimates in the drug development environment • Includes detailed chapters on data set structure, developing control streams for modeling and simulation, model applications, interpretation of NONMEM output and results, and quality control • Has datasets, programming code, and practice exercises with solutions, available on a supplementary website
International Encyclopedia of Statistical Science
Author: Miodrag Lovric
Publisher: Springer Science & Business Media
ISBN: 3642048978
Category : Mathematics
Languages : en
Pages : 0
Book Description
The goal of this book is multidimensional: a) to help reviving Statistics education in many parts in the world where it is in crisis. For the first time authors from many developing countries have an opportunity to write together with the most prominent world authorities. The editor has spent several years searching for the most reputable statisticians all over the world. International contributors are either presidents of the local statistical societies, or head of the Statistics department at the main university, or the most distinguished statisticians in their countries. b) to enable any non-statistician to obtain quick and yet comprehensive and highly understandable view on certain statistical term, method or application c) to enable all the researchers, managers and practicioners to refresh their knowledge in Statistics, especially in certain controversial fields. d) to revive interest in statistics among students, since they will see its usefulness and relevance in almost all branches of Science.
Publisher: Springer Science & Business Media
ISBN: 3642048978
Category : Mathematics
Languages : en
Pages : 0
Book Description
The goal of this book is multidimensional: a) to help reviving Statistics education in many parts in the world where it is in crisis. For the first time authors from many developing countries have an opportunity to write together with the most prominent world authorities. The editor has spent several years searching for the most reputable statisticians all over the world. International contributors are either presidents of the local statistical societies, or head of the Statistics department at the main university, or the most distinguished statisticians in their countries. b) to enable any non-statistician to obtain quick and yet comprehensive and highly understandable view on certain statistical term, method or application c) to enable all the researchers, managers and practicioners to refresh their knowledge in Statistics, especially in certain controversial fields. d) to revive interest in statistics among students, since they will see its usefulness and relevance in almost all branches of Science.
Nonlinear Models for Repeated Measurement Data
Author: Marie Davidian
Publisher: Routledge
ISBN: 1351428152
Category : Mathematics
Languages : en
Pages : 360
Book Description
Nonlinear measurement data arise in a wide variety of biological and biomedical applications, such as longitudinal clinical trials, studies of drug kinetics and growth, and the analysis of assay and laboratory data. Nonlinear Models for Repeated Measurement Data provides the first unified development of methods and models for data of this type, with a detailed treatment of inference for the nonlinear mixed effects and its extensions. A particular strength of the book is the inclusion of several detailed case studies from the areas of population pharmacokinetics and pharmacodynamics, immunoassay and bioassay development and the analysis of growth curves.
Publisher: Routledge
ISBN: 1351428152
Category : Mathematics
Languages : en
Pages : 360
Book Description
Nonlinear measurement data arise in a wide variety of biological and biomedical applications, such as longitudinal clinical trials, studies of drug kinetics and growth, and the analysis of assay and laboratory data. Nonlinear Models for Repeated Measurement Data provides the first unified development of methods and models for data of this type, with a detailed treatment of inference for the nonlinear mixed effects and its extensions. A particular strength of the book is the inclusion of several detailed case studies from the areas of population pharmacokinetics and pharmacodynamics, immunoassay and bioassay development and the analysis of growth curves.
Linear Mixed-Effects Models Using R
Author: Andrzej Gałecki
Publisher: Springer Science & Business Media
ISBN: 1461439000
Category : Mathematics
Languages : en
Pages : 558
Book Description
Linear mixed-effects models (LMMs) are an important class of statistical models that can be used to analyze correlated data. Such data are encountered in a variety of fields including biostatistics, public health, psychometrics, educational measurement, and sociology. This book aims to support a wide range of uses for the models by applied researchers in those and other fields by providing state-of-the-art descriptions of the implementation of LMMs in R. To help readers to get familiar with the features of the models and the details of carrying them out in R, the book includes a review of the most important theoretical concepts of the models. The presentation connects theory, software and applications. It is built up incrementally, starting with a summary of the concepts underlying simpler classes of linear models like the classical regression model, and carrying them forward to LMMs. A similar step-by-step approach is used to describe the R tools for LMMs. All the classes of linear models presented in the book are illustrated using real-life data. The book also introduces several novel R tools for LMMs, including new class of variance-covariance structure for random-effects, methods for influence diagnostics and for power calculations. They are included into an R package that should assist the readers in applying these and other methods presented in this text.
Publisher: Springer Science & Business Media
ISBN: 1461439000
Category : Mathematics
Languages : en
Pages : 558
Book Description
Linear mixed-effects models (LMMs) are an important class of statistical models that can be used to analyze correlated data. Such data are encountered in a variety of fields including biostatistics, public health, psychometrics, educational measurement, and sociology. This book aims to support a wide range of uses for the models by applied researchers in those and other fields by providing state-of-the-art descriptions of the implementation of LMMs in R. To help readers to get familiar with the features of the models and the details of carrying them out in R, the book includes a review of the most important theoretical concepts of the models. The presentation connects theory, software and applications. It is built up incrementally, starting with a summary of the concepts underlying simpler classes of linear models like the classical regression model, and carrying them forward to LMMs. A similar step-by-step approach is used to describe the R tools for LMMs. All the classes of linear models presented in the book are illustrated using real-life data. The book also introduces several novel R tools for LMMs, including new class of variance-covariance structure for random-effects, methods for influence diagnostics and for power calculations. They are included into an R package that should assist the readers in applying these and other methods presented in this text.
Mixed Effects Models for Complex Data
Author: Lang Wu
Publisher: CRC Press
ISBN: 9781420074086
Category : Mathematics
Languages : en
Pages : 431
Book Description
Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.
Publisher: CRC Press
ISBN: 9781420074086
Category : Mathematics
Languages : en
Pages : 431
Book Description
Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.
Mixed Models
Author: Eugene Demidenko
Publisher: John Wiley & Sons
ISBN: 1118091574
Category : Mathematics
Languages : en
Pages : 768
Book Description
Praise for the First Edition “This book will serve to greatly complement the growing number of texts dealing with mixed models, and I highly recommend including it in one’s personal library.” —Journal of the American Statistical Association Mixed modeling is a crucial area of statistics, enabling the analysis of clustered and longitudinal data. Mixed Models: Theory and Applications with R, Second Edition fills a gap in existing literature between mathematical and applied statistical books by presenting a powerful examination of mixed model theory and application with special attention given to the implementation in R. The new edition provides in-depth mathematical coverage of mixed models’ statistical properties and numerical algorithms, as well as nontraditional applications, such as regrowth curves, shapes, and images. The book features the latest topics in statistics including modeling of complex clustered or longitudinal data, modeling data with multiple sources of variation, modeling biological variety and heterogeneity, Healthy Akaike Information Criterion (HAIC), parameter multidimensionality, and statistics of image processing. Mixed Models: Theory and Applications with R, Second Edition features unique applications of mixed model methodology, as well as: Comprehensive theoretical discussions illustrated by examples and figures Over 300 exercises, end-of-section problems, updated data sets, and R subroutines Problems and extended projects requiring simulations in R intended to reinforce material Summaries of major results and general points of discussion at the end of each chapter Open problems in mixed modeling methodology, which can be used as the basis for research or PhD dissertations Ideal for graduate-level courses in mixed statistical modeling, the book is also an excellent reference for professionals in a range of fields, including cancer research, computer science, and engineering.
Publisher: John Wiley & Sons
ISBN: 1118091574
Category : Mathematics
Languages : en
Pages : 768
Book Description
Praise for the First Edition “This book will serve to greatly complement the growing number of texts dealing with mixed models, and I highly recommend including it in one’s personal library.” —Journal of the American Statistical Association Mixed modeling is a crucial area of statistics, enabling the analysis of clustered and longitudinal data. Mixed Models: Theory and Applications with R, Second Edition fills a gap in existing literature between mathematical and applied statistical books by presenting a powerful examination of mixed model theory and application with special attention given to the implementation in R. The new edition provides in-depth mathematical coverage of mixed models’ statistical properties and numerical algorithms, as well as nontraditional applications, such as regrowth curves, shapes, and images. The book features the latest topics in statistics including modeling of complex clustered or longitudinal data, modeling data with multiple sources of variation, modeling biological variety and heterogeneity, Healthy Akaike Information Criterion (HAIC), parameter multidimensionality, and statistics of image processing. Mixed Models: Theory and Applications with R, Second Edition features unique applications of mixed model methodology, as well as: Comprehensive theoretical discussions illustrated by examples and figures Over 300 exercises, end-of-section problems, updated data sets, and R subroutines Problems and extended projects requiring simulations in R intended to reinforce material Summaries of major results and general points of discussion at the end of each chapter Open problems in mixed modeling methodology, which can be used as the basis for research or PhD dissertations Ideal for graduate-level courses in mixed statistical modeling, the book is also an excellent reference for professionals in a range of fields, including cancer research, computer science, and engineering.
Mixed Effects Models for the Population Approach
Author: Marc Lavielle
Publisher: CRC Press
ISBN: 1482226510
Category : Mathematics
Languages : en
Pages : 380
Book Description
Wide-Ranging Coverage of Parametric Modeling in Linear and Nonlinear Mixed Effects ModelsMixed Effects Models for the Population Approach: Models, Tasks, Methods and Tools presents a rigorous framework for describing, implementing, and using mixed effects models. With these models, readers can perform parameter estimation and modeling across a whol
Publisher: CRC Press
ISBN: 1482226510
Category : Mathematics
Languages : en
Pages : 380
Book Description
Wide-Ranging Coverage of Parametric Modeling in Linear and Nonlinear Mixed Effects ModelsMixed Effects Models for the Population Approach: Models, Tasks, Methods and Tools presents a rigorous framework for describing, implementing, and using mixed effects models. With these models, readers can perform parameter estimation and modeling across a whol
Generalized Linear Mixed Models
Author: Charles E. McCulloch
Publisher: IMS
ISBN: 9780940600546
Category : Mathematics
Languages : en
Pages : 100
Book Description
Wiley Series in Probability and Statistics A modern perspective on mixed models The availability of powerful computing methods in recent decades has thrust linear and nonlinear mixed models into the mainstream of statistical application. This volume offers a modern perspective on generalized, linear, and mixed models, presenting a unified and accessible treatment of the newest statistical methods for analyzing correlated, nonnormally distributed data. As a follow-up to Searle's classic, Linear Models, and Variance Components by Searle, Casella, and McCulloch, this new work progresses from the basic one-way classification to generalized linear mixed models. A variety of statistical methods are explained and illustrated, with an emphasis on maximum likelihood and restricted maximum likelihood. An invaluable resource for applied statisticians and industrial practitioners, as well as students interested in the latest results, Generalized, Linear, and Mixed Models features: * A review of the basics of linear models and linear mixed models * Descriptions of models for nonnormal data, including generalized linear and nonlinear models * Analysis and illustration of techniques for a variety of real data sets * Information on the accommodation of longitudinal data using these models * Coverage of the prediction of realized values of random effects * A discussion of the impact of computing issues on mixed models
Publisher: IMS
ISBN: 9780940600546
Category : Mathematics
Languages : en
Pages : 100
Book Description
Wiley Series in Probability and Statistics A modern perspective on mixed models The availability of powerful computing methods in recent decades has thrust linear and nonlinear mixed models into the mainstream of statistical application. This volume offers a modern perspective on generalized, linear, and mixed models, presenting a unified and accessible treatment of the newest statistical methods for analyzing correlated, nonnormally distributed data. As a follow-up to Searle's classic, Linear Models, and Variance Components by Searle, Casella, and McCulloch, this new work progresses from the basic one-way classification to generalized linear mixed models. A variety of statistical methods are explained and illustrated, with an emphasis on maximum likelihood and restricted maximum likelihood. An invaluable resource for applied statisticians and industrial practitioners, as well as students interested in the latest results, Generalized, Linear, and Mixed Models features: * A review of the basics of linear models and linear mixed models * Descriptions of models for nonnormal data, including generalized linear and nonlinear models * Analysis and illustration of techniques for a variety of real data sets * Information on the accommodation of longitudinal data using these models * Coverage of the prediction of realized values of random effects * A discussion of the impact of computing issues on mixed models
Nonlinear Regression with R
Author: Christian Ritz
Publisher: Springer Science & Business Media
ISBN: 0387096167
Category : Mathematics
Languages : en
Pages : 151
Book Description
- Coherent and unified treatment of nonlinear regression with R. - Example-based approach. - Wide area of application.
Publisher: Springer Science & Business Media
ISBN: 0387096167
Category : Mathematics
Languages : en
Pages : 151
Book Description
- Coherent and unified treatment of nonlinear regression with R. - Example-based approach. - Wide area of application.