Nonlinear Inclusions and Hemivariational Inequalities

Nonlinear Inclusions and Hemivariational Inequalities PDF Author: Stanisław Migórski
Publisher: Springer Science & Business Media
ISBN: 1461442311
Category : Mathematics
Languages : en
Pages : 293

Get Book Here

Book Description
This book introduces the reader the theory of nonlinear inclusions and hemivariational inequalities with emphasis on the study of contact mechanics. The work covers both abstract results in the area of nonlinear inclusions, hemivariational inequalities as well as the study of specific contact problems, including their modelling and their variational analysis. Provided results are based on original research on the existence, uniqueness, regularity and behavior of the solution for various classes of nonlinear stationary and evolutionary inclusions. In carrying out the variational analysis of various contact models, one systematically uses results of hemivariational inequalities and, in this way, illustrates the applications of nonlinear analysis in contact mechanics. New mathematical methods are introduced and applied in the study of nonlinear problems, which describe the contact between a deformable body and a foundation. Contact problems arise in industry, engineering and geophysics. Their variational analysis presented in this book lies the background for their numerical analysis. This volume will interest mathematicians, applied mathematicians, engineers, and scientists as well as advanced graduate students.

Nonlinear Inclusions and Hemivariational Inequalities

Nonlinear Inclusions and Hemivariational Inequalities PDF Author: Stanisław Migórski
Publisher: Springer Science & Business Media
ISBN: 1461442311
Category : Mathematics
Languages : en
Pages : 293

Get Book Here

Book Description
This book introduces the reader the theory of nonlinear inclusions and hemivariational inequalities with emphasis on the study of contact mechanics. The work covers both abstract results in the area of nonlinear inclusions, hemivariational inequalities as well as the study of specific contact problems, including their modelling and their variational analysis. Provided results are based on original research on the existence, uniqueness, regularity and behavior of the solution for various classes of nonlinear stationary and evolutionary inclusions. In carrying out the variational analysis of various contact models, one systematically uses results of hemivariational inequalities and, in this way, illustrates the applications of nonlinear analysis in contact mechanics. New mathematical methods are introduced and applied in the study of nonlinear problems, which describe the contact between a deformable body and a foundation. Contact problems arise in industry, engineering and geophysics. Their variational analysis presented in this book lies the background for their numerical analysis. This volume will interest mathematicians, applied mathematicians, engineers, and scientists as well as advanced graduate students.

Nonlinear Inclusions and Hemivariational Inequalities

Nonlinear Inclusions and Hemivariational Inequalities PDF Author: Stanisław Migórski
Publisher: Springer Science & Business Media
ISBN: 146144232X
Category : Mathematics
Languages : en
Pages : 293

Get Book Here

Book Description
This book introduces the reader the theory of nonlinear inclusions and hemivariational inequalities with emphasis on the study of contact mechanics. The work covers both abstract results in the area of nonlinear inclusions, hemivariational inequalities as well as the study of specific contact problems, including their modelling and their variational analysis. Provided results are based on original research on the existence, uniqueness, regularity and behavior of the solution for various classes of nonlinear stationary and evolutionary inclusions. In carrying out the variational analysis of various contact models, one systematically uses results of hemivariational inequalities and, in this way, illustrates the applications of nonlinear analysis in contact mechanics. New mathematical methods are introduced and applied in the study of nonlinear problems, which describe the contact between a deformable body and a foundation. Contact problems arise in industry, engineering and geophysics. Their variational analysis presented in this book lies the background for their numerical analysis. This volume will interest mathematicians, applied mathematicians, engineers, and scientists as well as advanced graduate students.

Variational-Hemivariational Inequalities with Applications

Variational-Hemivariational Inequalities with Applications PDF Author: Mircea Sofonea
Publisher: CRC Press
ISBN: 1351649299
Category : Mathematics
Languages : en
Pages : 412

Get Book Here

Book Description
This research monograph represents an outcome of the cross-fertilization between nonlinear functional analysis and mathematical modelling, and demonstrates its application to solid and contact mechanics. Based on authors’ original results, it introduces a general fixed point principle and its application to various nonlinear problems in analysis and mechanics. The classes of history-dependent operators and almost history-dependent operators are exposed in a large generality. A systematic and unified presentation contains a carefully-selected collection of new results on variational-hemivariational inequalities with or without unilateral constraints. A wide spectrum of static, quasistatic, dynamic contact problems for elastic, viscoelastic and viscoplastic materials illustrates the applicability of these theoretical results. Written for mathematicians, applied mathematicians, engineers and scientists, it is also a valuable tool for graduate students and researchers in nonlinear analysis, mathematical modelling, mechanics of solids, and contact mechanics.

Advances in Variational and Hemivariational Inequalities

Advances in Variational and Hemivariational Inequalities PDF Author: Weimin Han
Publisher: Springer
ISBN: 3319144901
Category : Mathematics
Languages : en
Pages : 389

Get Book Here

Book Description
This volume is comprised of articles providing new results on variational and hemivariational inequalities with applications to Contact Mechanics unavailable from other sources. The book will be of particular interest to graduate students and young researchers in applied and pure mathematics, civil, aeronautical and mechanical engineering, and can be used as supplementary reading material for advanced specialized courses in mathematical modeling. New results on well posedness to stationary and evolutionary inequalities and their rigorous proofs are of particular interest to readers. In addition to results on modeling and abstract problems, the book contains new results on the numerical methods for variational and hemivariational inequalities.

Hemivariational Inequalities

Hemivariational Inequalities PDF Author: Panagiotis D. Panagiotopoulos
Publisher: Springer Science & Business Media
ISBN: 3642516777
Category : Technology & Engineering
Languages : en
Pages : 453

Get Book Here

Book Description
The aim of the present book is the formulation, mathematical study and numerical treatment of static and dynamic problems in mechanics and engineering sciences involving nonconvex and nonsmooth energy functions, or nonmonotone and multivalued stress-strain laws. Such problems lead to a new type of variational forms, the hemivariational inequalities, which also lead to multivalued differential or integral equations. Innovative numerical methods are presented for the treament of realistic engineering problems. This book is the first to deal with variational theory of engineering problems involving nonmonotone multivalue realations, their mechanical foundation, their mathematical study (existence and certain approximation results) and the corresponding eigenvalue and optimal control problems. All the numerical applications give innovative answers to as yet unsolved or partially solved engineering problems, e.g. the adhesive contact in cracks, the delamination problem, the sawtooth stress-strain laws in composites, the shear connectors in composite beams, the semirigid connections in steel structures, the adhesive grasping in robotics, etc. The book closes with the consideration of hemivariational inequalities for fractal type geometries and with the neural network approach to the numerical treatment of hemivariational inequalities.

Well-Posed Nonlinear Problems

Well-Posed Nonlinear Problems PDF Author: Mircea Sofonea
Publisher: Springer Nature
ISBN: 3031414160
Category : Mathematics
Languages : en
Pages : 410

Get Book Here

Book Description
This monograph presents an original method to unify the mathematical theories of well-posed problems and contact mechanics. The author uses a new concept called the Tykhonov triple to develop a well-posedness theory in which every convergence result can be interpreted as a well-posedness result. This will be useful for studying a wide class of nonlinear problems, including fixed-point problems, inequality problems, and optimal control problems. Another unique feature of the manuscript is the unitary treatment of mathematical models of contact, for which new variational formulations and convergence results are presented. Well-Posed Nonlinear Problems will be a valuable resource for PhD students and researchers studying contact problems. It will also be accessible to interested researchers in related fields, such as physics, mechanics, engineering, and operations research.

Variational-Hemivariational Inequalities with Applications

Variational-Hemivariational Inequalities with Applications PDF Author: Mircea Sofonea
Publisher: CRC Press
ISBN: 104026316X
Category : Mathematics
Languages : en
Pages : 350

Get Book Here

Book Description
Variational-Hemivariational Inequalities with Applications, Second Edition represents the outcome of the cross-fertilization of nonlinear functional analysis and mathematical modelling, demonstrating its application to solid and contact mechanics. Based on authors’ original results, the book illustrates the use of various functional methods (including monotonicity, pseudomonotonicity, compactness, penalty and fixed-point methods) in the study of various nonlinear problems in analysis and mechanics. The classes of history-dependent operators and almost history-dependent operators are exposed in a large generality. A systematic and unified presentation contains a carefully selected collection of new results on variational-hemivariational inequalities with or without unilateral constraints. A wide spectrum of static, quasistatic, dynamic contact problems for elastic, viscoelastic and viscoplastic materials illustrates the applicability of these theoretical results. Written for mathematicians, applied mathematicians, engineers and scientists, this book is also a valuable tool for graduate students and researchers in nonlinear analysis, mathematical modelling, mechanics of solids, and contact mechanics. New to the second edition Convergence and well-posedness results for elliptic and history-dependent variational-hemivariational inequalities Existence results on various optimal control problems with applications in solid and contact mechanics Existence, uniqueness and stability results for evolutionary and differential variational-hemivariational inequalities with unilateral constraints Modelling and analysis of static and quasistatic contact problems for elastic and viscoelastic materials with looking effect Modelling and analysis of viscoelastic and viscoplastic dynamic contact problems with unilateral constraints.

Advances in Mathematical Modeling, Optimization and Optimal Control

Advances in Mathematical Modeling, Optimization and Optimal Control PDF Author: Jean-Baptiste Hiriart-Urruty
Publisher: Springer
ISBN: 3319307851
Category : Mathematics
Languages : en
Pages : 205

Get Book Here

Book Description
This book contains extended, in-depth presentations of the plenary talks from the 16th French-German-Polish Conference on Optimization, held in Kraków, Poland in 2013. Each chapter in this book exhibits a comprehensive look at new theoretical and/or application-oriented results in mathematical modeling, optimization, and optimal control. Students and researchers involved in image processing, partial differential inclusions, shape optimization, or optimal control theory and its applications to medical and rehabilitation technology, will find this book valuable. The first chapter by Martin Burger provides an overview of recent developments related to Bregman distances, which is an important tool in inverse problems and image processing. The chapter by Piotr Kalita studies the operator version of a first order in time partial differential inclusion and its time discretization. In the chapter by Günter Leugering, Jan Sokołowski and Antoni Żochowski, nonsmooth shape optimization problems for variational inequalities are considered. The next chapter, by Katja Mombaur is devoted to applications of optimal control and inverse optimal control in the field of medical and rehabilitation technology, in particular in human movement analysis, therapy and improvement by means of medical devices. The final chapter, by Nikolai Osmolovskii and Helmut Maurer provides a survey on no-gap second order optimality conditions in the calculus of variations and optimal control, and a discussion of their further development.

Evolution Inclusions and Variation Inequalities for Earth Data Processing III

Evolution Inclusions and Variation Inequalities for Earth Data Processing III PDF Author: Mikhail Z. Zgurovsky
Publisher: Springer Science & Business Media
ISBN: 3642285120
Category : Mathematics
Languages : en
Pages : 368

Get Book Here

Book Description
In this sequel to two earlier volumes, the authors now focus on the long-time behavior of evolution inclusions, based on the theory of extremal solutions to differential-operator problems. This approach is used to solve problems in climate research, geophysics, aerohydrodynamics, chemical kinetics or fluid dynamics. As in the previous volumes, the authors present a toolbox of mathematical equations. The book is based on seminars and lecture courses on multi-valued and non-linear analysis and their geophysical application.

Qualitative and Quantitative Analysis of Nonlinear Systems

Qualitative and Quantitative Analysis of Nonlinear Systems PDF Author: Michael Z. Zgurovsky
Publisher: Springer
ISBN: 3319598406
Category : Technology & Engineering
Languages : en
Pages : 265

Get Book Here

Book Description
Here, the authors present modern methods of analysis for nonlinear systems which may occur in fields such as physics, chemistry, biology, or economics. They concentrate on the following topics, specific for such systems: (a) constructive existence results and regularity theorems for all weak solutions; (b) convergence results for solutions and their approximations; (c) uniform global behavior of solutions in time; and (d) pointwise behavior of solutions for autonomous problems with possible gaps by the phase variables. The general methodology for the investigation of dissipative dynamical systems with several applications including nonlinear parabolic equations of divergent form, nonlinear stochastic equations of parabolic type, unilateral problems, nonlinear PDEs on Riemannian manifolds with or without boundary, contact problems as well as particular examples is established. As such, the book is addressed to a wide circle of mathematical, mechanical and engineering readers.