Author: Christodoulos A. Floudas
Publisher: Oxford University Press
ISBN: 0195100565
Category : Business & Economics
Languages : en
Pages : 475
Book Description
This volume presents the fundamentals of nonlinear and mixed-integer optimisation, and their applications in the important area of process synthesis in chemical engineering. Topics that are unique include the theory and methods for mixed-integer nonlinear optimisation, introduction to modelling issues in process synthesis, and optimisation-based approaches in the synthesis of heat recovery systems, distillation-based systems, and reactor-based systems.
Nonlinear and Mixed-Integer Optimization
Author: Christodoulos A. Floudas
Publisher: Oxford University Press
ISBN: 0195100565
Category : Business & Economics
Languages : en
Pages : 475
Book Description
This volume presents the fundamentals of nonlinear and mixed-integer optimisation, and their applications in the important area of process synthesis in chemical engineering. Topics that are unique include the theory and methods for mixed-integer nonlinear optimisation, introduction to modelling issues in process synthesis, and optimisation-based approaches in the synthesis of heat recovery systems, distillation-based systems, and reactor-based systems.
Publisher: Oxford University Press
ISBN: 0195100565
Category : Business & Economics
Languages : en
Pages : 475
Book Description
This volume presents the fundamentals of nonlinear and mixed-integer optimisation, and their applications in the important area of process synthesis in chemical engineering. Topics that are unique include the theory and methods for mixed-integer nonlinear optimisation, introduction to modelling issues in process synthesis, and optimisation-based approaches in the synthesis of heat recovery systems, distillation-based systems, and reactor-based systems.
Mixed Integer Nonlinear Programming
Author: Jon Lee
Publisher: Springer Science & Business Media
ISBN: 1461419271
Category : Mathematics
Languages : en
Pages : 687
Book Description
Many engineering, operations, and scientific applications include a mixture of discrete and continuous decision variables and nonlinear relationships involving the decision variables that have a pronounced effect on the set of feasible and optimal solutions. Mixed-integer nonlinear programming (MINLP) problems combine the numerical difficulties of handling nonlinear functions with the challenge of optimizing in the context of nonconvex functions and discrete variables. MINLP is one of the most flexible modeling paradigms available for optimization; but because its scope is so broad, in the most general cases it is hopelessly intractable. Nonetheless, an expanding body of researchers and practitioners — including chemical engineers, operations researchers, industrial engineers, mechanical engineers, economists, statisticians, computer scientists, operations managers, and mathematical programmers — are interested in solving large-scale MINLP instances.
Publisher: Springer Science & Business Media
ISBN: 1461419271
Category : Mathematics
Languages : en
Pages : 687
Book Description
Many engineering, operations, and scientific applications include a mixture of discrete and continuous decision variables and nonlinear relationships involving the decision variables that have a pronounced effect on the set of feasible and optimal solutions. Mixed-integer nonlinear programming (MINLP) problems combine the numerical difficulties of handling nonlinear functions with the challenge of optimizing in the context of nonconvex functions and discrete variables. MINLP is one of the most flexible modeling paradigms available for optimization; but because its scope is so broad, in the most general cases it is hopelessly intractable. Nonetheless, an expanding body of researchers and practitioners — including chemical engineers, operations researchers, industrial engineers, mechanical engineers, economists, statisticians, computer scientists, operations managers, and mathematical programmers — are interested in solving large-scale MINLP instances.
Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming
Author: Mohit Tawarmalani
Publisher: Springer Science & Business Media
ISBN: 1475735324
Category : Mathematics
Languages : en
Pages : 492
Book Description
Interest in constrained optimization originated with the simple linear pro gramming model since it was practical and perhaps the only computationally tractable model at the time. Constrained linear optimization models were soon adopted in numerous application areas and are perhaps the most widely used mathematical models in operations research and management science at the time of this writing. Modelers have, however, found the assumption of linearity to be overly restrictive in expressing the real-world phenomena and problems in economics, finance, business, communication, engineering design, computational biology, and other areas that frequently demand the use of nonlinear expressions and discrete variables in optimization models. Both of these extensions of the linear programming model are NP-hard, thus representing very challenging problems. On the brighter side, recent advances in algorithmic and computing technology make it possible to re visit these problems with the hope of solving practically relevant problems in reasonable amounts of computational time. Initial attempts at solving nonlinear programs concentrated on the de velopment of local optimization methods guaranteeing globality under the assumption of convexity. On the other hand, the integer programming liter ature has concentrated on the development of methods that ensure global optima. The aim of this book is to marry the advancements in solving nonlinear and integer programming models and to develop new results in the more general framework of mixed-integer nonlinear programs (MINLPs) with the goal of devising practically efficient global optimization algorithms for MINLPs.
Publisher: Springer Science & Business Media
ISBN: 1475735324
Category : Mathematics
Languages : en
Pages : 492
Book Description
Interest in constrained optimization originated with the simple linear pro gramming model since it was practical and perhaps the only computationally tractable model at the time. Constrained linear optimization models were soon adopted in numerous application areas and are perhaps the most widely used mathematical models in operations research and management science at the time of this writing. Modelers have, however, found the assumption of linearity to be overly restrictive in expressing the real-world phenomena and problems in economics, finance, business, communication, engineering design, computational biology, and other areas that frequently demand the use of nonlinear expressions and discrete variables in optimization models. Both of these extensions of the linear programming model are NP-hard, thus representing very challenging problems. On the brighter side, recent advances in algorithmic and computing technology make it possible to re visit these problems with the hope of solving practically relevant problems in reasonable amounts of computational time. Initial attempts at solving nonlinear programs concentrated on the de velopment of local optimization methods guaranteeing globality under the assumption of convexity. On the other hand, the integer programming liter ature has concentrated on the development of methods that ensure global optima. The aim of this book is to marry the advancements in solving nonlinear and integer programming models and to develop new results in the more general framework of mixed-integer nonlinear programs (MINLPs) with the goal of devising practically efficient global optimization algorithms for MINLPs.
Disjunctive Programming
Author: Egon Balas
Publisher: Springer
ISBN: 3030001482
Category : Mathematics
Languages : en
Pages : 238
Book Description
Disjunctive Programming is a technique and a discipline initiated by the author in the early 1970's, which has become a central tool for solving nonconvex optimization problems like pure or mixed integer programs, through convexification (cutting plane) procedures combined with enumeration. It has played a major role in the revolution in the state of the art of Integer Programming that took place roughly during the period 1990-2010. The main benefit that the reader may acquire from reading this book is a deeper understanding of the theoretical underpinnings and of the applications potential of disjunctive programming, which range from more efficient problem formulation to enhanced modeling capability and improved solution methods for integer and combinatorial optimization. Egon Balas is University Professor and Lord Professor of Operations Research at Carnegie Mellon University's Tepper School of Business.
Publisher: Springer
ISBN: 3030001482
Category : Mathematics
Languages : en
Pages : 238
Book Description
Disjunctive Programming is a technique and a discipline initiated by the author in the early 1970's, which has become a central tool for solving nonconvex optimization problems like pure or mixed integer programs, through convexification (cutting plane) procedures combined with enumeration. It has played a major role in the revolution in the state of the art of Integer Programming that took place roughly during the period 1990-2010. The main benefit that the reader may acquire from reading this book is a deeper understanding of the theoretical underpinnings and of the applications potential of disjunctive programming, which range from more efficient problem formulation to enhanced modeling capability and improved solution methods for integer and combinatorial optimization. Egon Balas is University Professor and Lord Professor of Operations Research at Carnegie Mellon University's Tepper School of Business.
Relaxation and Decomposition Methods for Mixed Integer Nonlinear Programming
Author: Ivo Nowak
Publisher: Springer Science & Business Media
ISBN: 9783764372385
Category : Computers
Languages : en
Pages : 242
Book Description
Nonlinearoptimizationproblemscontainingbothcontinuousanddiscretevariables are called mixed integer nonlinear programs (MINLP). Such problems arise in many ?elds, such as process industry, engineering design, communications, and ?nance. There is currently a huge gap between MINLP and mixed integer linear programming(MIP) solvertechnology.With a modernstate-of-the-artMIP solver itispossibletosolvemodelswithmillionsofvariablesandconstraints,whereasthe dimensionofsolvableMINLPsisoftenlimitedbyanumberthatissmallerbythree or four orders of magnitude. It is theoretically possible to approximate a general MINLP by a MIP with arbitrary precision. However, good MIP approximations are usually much larger than the original problem. Moreover, the approximation of nonlinear functions by piecewise linear functions can be di?cult and ti- consuming. In this book relaxation and decomposition methods for solving nonconvex structured MINLPs are proposed. In particular, a generic branch-cut-and-price (BCP) framework for MINLP is presented. BCP is the underlying concept in almost all modern MIP solvers. Providing a powerful decomposition framework for both sequential and parallel solvers, it made the success of the current MIP technology possible. So far generic BCP frameworks have been developed only for MIP, for example,COIN/BCP (IBM, 2003) andABACUS (OREAS GmbH, 1999). In order to generalize MIP-BCP to MINLP-BCP, the following points have to be taken into account: • A given (sparse) MINLP is reformulated as a block-separable program with linear coupling constraints.The block structure makes it possible to generate Lagrangian cuts and to apply Lagrangian heuristics. • In order to facilitate the generation of polyhedral relaxations, nonlinear c- vex relaxations are constructed. • The MINLP separation and pricing subproblems for generating cuts and columns are solved with specialized MINLP solvers.
Publisher: Springer Science & Business Media
ISBN: 9783764372385
Category : Computers
Languages : en
Pages : 242
Book Description
Nonlinearoptimizationproblemscontainingbothcontinuousanddiscretevariables are called mixed integer nonlinear programs (MINLP). Such problems arise in many ?elds, such as process industry, engineering design, communications, and ?nance. There is currently a huge gap between MINLP and mixed integer linear programming(MIP) solvertechnology.With a modernstate-of-the-artMIP solver itispossibletosolvemodelswithmillionsofvariablesandconstraints,whereasthe dimensionofsolvableMINLPsisoftenlimitedbyanumberthatissmallerbythree or four orders of magnitude. It is theoretically possible to approximate a general MINLP by a MIP with arbitrary precision. However, good MIP approximations are usually much larger than the original problem. Moreover, the approximation of nonlinear functions by piecewise linear functions can be di?cult and ti- consuming. In this book relaxation and decomposition methods for solving nonconvex structured MINLPs are proposed. In particular, a generic branch-cut-and-price (BCP) framework for MINLP is presented. BCP is the underlying concept in almost all modern MIP solvers. Providing a powerful decomposition framework for both sequential and parallel solvers, it made the success of the current MIP technology possible. So far generic BCP frameworks have been developed only for MIP, for example,COIN/BCP (IBM, 2003) andABACUS (OREAS GmbH, 1999). In order to generalize MIP-BCP to MINLP-BCP, the following points have to be taken into account: • A given (sparse) MINLP is reformulated as a block-separable program with linear coupling constraints.The block structure makes it possible to generate Lagrangian cuts and to apply Lagrangian heuristics. • In order to facilitate the generation of polyhedral relaxations, nonlinear c- vex relaxations are constructed. • The MINLP separation and pricing subproblems for generating cuts and columns are solved with specialized MINLP solvers.
Handbook of Combinatorial Optimization
Author: Ding-Zhu Du
Publisher: Springer Science & Business Media
ISBN: 0387238301
Category : Business & Economics
Languages : en
Pages : 395
Book Description
This is a supplementary volume to the major three-volume Handbook of Combinatorial Optimization set. It can also be regarded as a stand-alone volume presenting chapters dealing with various aspects of the subject in a self-contained way.
Publisher: Springer Science & Business Media
ISBN: 0387238301
Category : Business & Economics
Languages : en
Pages : 395
Book Description
This is a supplementary volume to the major three-volume Handbook of Combinatorial Optimization set. It can also be regarded as a stand-alone volume presenting chapters dealing with various aspects of the subject in a self-contained way.
Nonlinear Integer Programming
Author: Duan Li
Publisher: Springer Science & Business Media
ISBN: 0387329951
Category : Mathematics
Languages : en
Pages : 452
Book Description
A combination of both Integer Programming and Nonlinear Optimization, this is a powerful book that surveys the field and provides a state-of-the-art treatment of Nonlinear Integer Programming. It is the first book available on the subject. The book aims to bring the theoretical foundation and solution methods for nonlinear integer programming to students and researchers in optimization, operations research, and computer science.
Publisher: Springer Science & Business Media
ISBN: 0387329951
Category : Mathematics
Languages : en
Pages : 452
Book Description
A combination of both Integer Programming and Nonlinear Optimization, this is a powerful book that surveys the field and provides a state-of-the-art treatment of Nonlinear Integer Programming. It is the first book available on the subject. The book aims to bring the theoretical foundation and solution methods for nonlinear integer programming to students and researchers in optimization, operations research, and computer science.
Fast Numerical Methods for Mixed-Integer Nonlinear Model-Predictive Control
Author: Christian Kirches
Publisher: Springer Science & Business Media
ISBN: 383488202X
Category : Computers
Languages : en
Pages : 380
Book Description
Christian Kirches develops a fast numerical algorithm of wide applicability that efficiently solves mixed-integer nonlinear optimal control problems. He uses convexification and relaxation techniques to obtain computationally tractable reformulations for which feasibility and optimality certificates can be given even after discretization and rounding.
Publisher: Springer Science & Business Media
ISBN: 383488202X
Category : Computers
Languages : en
Pages : 380
Book Description
Christian Kirches develops a fast numerical algorithm of wide applicability that efficiently solves mixed-integer nonlinear optimal control problems. He uses convexification and relaxation techniques to obtain computationally tractable reformulations for which feasibility and optimality certificates can be given even after discretization and rounding.
Large-Scale Optimization with Applications
Author: Lorenz T. Biegler
Publisher: Springer Science & Business Media
ISBN: 1461219620
Category : Mathematics
Languages : en
Pages : 219
Book Description
With contributions by specialists in optimization and practitioners in the fields of aerospace engineering, chemical engineering, and fluid and solid mechanics, the major themes include an assessment of the state of the art in optimization algorithms as well as challenging applications in design and control, in the areas of process engineering and systems with partial differential equation models.
Publisher: Springer Science & Business Media
ISBN: 1461219620
Category : Mathematics
Languages : en
Pages : 219
Book Description
With contributions by specialists in optimization and practitioners in the fields of aerospace engineering, chemical engineering, and fluid and solid mechanics, the major themes include an assessment of the state of the art in optimization algorithms as well as challenging applications in design and control, in the areas of process engineering and systems with partial differential equation models.
Linear and Nonlinear Optimization
Author: Richard W. Cottle
Publisher: Springer
ISBN: 1493970550
Category : Business & Economics
Languages : en
Pages : 644
Book Description
This textbook on Linear and Nonlinear Optimization is intended for graduate and advanced undergraduate students in operations research and related fields. It is both literate and mathematically strong, yet requires no prior course in optimization. As suggested by its title, the book is divided into two parts covering in their individual chapters LP Models and Applications; Linear Equations and Inequalities; The Simplex Algorithm; Simplex Algorithm Continued; Duality and the Dual Simplex Algorithm; Postoptimality Analyses; Computational Considerations; Nonlinear (NLP) Models and Applications; Unconstrained Optimization; Descent Methods; Optimality Conditions; Problems with Linear Constraints; Problems with Nonlinear Constraints; Interior-Point Methods; and an Appendix covering Mathematical Concepts. Each chapter ends with a set of exercises. The book is based on lecture notes the authors have used in numerous optimization courses the authors have taught at Stanford University. It emphasizes modeling and numerical algorithms for optimization with continuous (not integer) variables. The discussion presents the underlying theory without always focusing on formal mathematical proofs (which can be found in cited references). Another feature of this book is its inclusion of cultural and historical matters, most often appearing among the footnotes. "This book is a real gem. The authors do a masterful job of rigorously presenting all of the relevant theory clearly and concisely while managing to avoid unnecessary tedious mathematical details. This is an ideal book for teaching a one or two semester masters-level course in optimization – it broadly covers linear and nonlinear programming effectively balancing modeling, algorithmic theory, computation, implementation, illuminating historical facts, and numerous interesting examples and exercises. Due to the clarity of the exposition, this book also serves as a valuable reference for self-study." Professor Ilan Adler, IEOR Department, UC Berkeley "A carefully crafted introduction to the main elements and applications of mathematical optimization. This volume presents the essential concepts of linear and nonlinear programming in an accessible format filled with anecdotes, examples, and exercises that bring the topic to life. The authors plumb their decades of experience in optimization to provide an enriching layer of historical context. Suitable for advanced undergraduates and masters students in management science, operations research, and related fields." Michael P. Friedlander, IBM Professor of Computer Science, Professor of Mathematics, University of British Columbia
Publisher: Springer
ISBN: 1493970550
Category : Business & Economics
Languages : en
Pages : 644
Book Description
This textbook on Linear and Nonlinear Optimization is intended for graduate and advanced undergraduate students in operations research and related fields. It is both literate and mathematically strong, yet requires no prior course in optimization. As suggested by its title, the book is divided into two parts covering in their individual chapters LP Models and Applications; Linear Equations and Inequalities; The Simplex Algorithm; Simplex Algorithm Continued; Duality and the Dual Simplex Algorithm; Postoptimality Analyses; Computational Considerations; Nonlinear (NLP) Models and Applications; Unconstrained Optimization; Descent Methods; Optimality Conditions; Problems with Linear Constraints; Problems with Nonlinear Constraints; Interior-Point Methods; and an Appendix covering Mathematical Concepts. Each chapter ends with a set of exercises. The book is based on lecture notes the authors have used in numerous optimization courses the authors have taught at Stanford University. It emphasizes modeling and numerical algorithms for optimization with continuous (not integer) variables. The discussion presents the underlying theory without always focusing on formal mathematical proofs (which can be found in cited references). Another feature of this book is its inclusion of cultural and historical matters, most often appearing among the footnotes. "This book is a real gem. The authors do a masterful job of rigorously presenting all of the relevant theory clearly and concisely while managing to avoid unnecessary tedious mathematical details. This is an ideal book for teaching a one or two semester masters-level course in optimization – it broadly covers linear and nonlinear programming effectively balancing modeling, algorithmic theory, computation, implementation, illuminating historical facts, and numerous interesting examples and exercises. Due to the clarity of the exposition, this book also serves as a valuable reference for self-study." Professor Ilan Adler, IEOR Department, UC Berkeley "A carefully crafted introduction to the main elements and applications of mathematical optimization. This volume presents the essential concepts of linear and nonlinear programming in an accessible format filled with anecdotes, examples, and exercises that bring the topic to life. The authors plumb their decades of experience in optimization to provide an enriching layer of historical context. Suitable for advanced undergraduates and masters students in management science, operations research, and related fields." Michael P. Friedlander, IBM Professor of Computer Science, Professor of Mathematics, University of British Columbia