Author: Nikolaos S. Papageorgiou
Publisher: Springer
ISBN: 3030034305
Category : Mathematics
Languages : en
Pages : 586
Book Description
This book emphasizes those basic abstract methods and theories that are useful in the study of nonlinear boundary value problems. The content is developed over six chapters, providing a thorough introduction to the techniques used in the variational and topological analysis of nonlinear boundary value problems described by stationary differential operators. The authors give a systematic treatment of the basic mathematical theory and constructive methods for these classes of nonlinear equations as well as their applications to various processes arising in the applied sciences. They show how these diverse topics are connected to other important parts of mathematics, including topology, functional analysis, mathematical physics, and potential theory. Throughout the book a nice balance is maintained between rigorous mathematics and physical applications. The primary readership includes graduate students and researchers in pure and applied nonlinear analysis.
Nonlinear Analysis - Theory and Methods
Author: Nikolaos S. Papageorgiou
Publisher: Springer
ISBN: 3030034305
Category : Mathematics
Languages : en
Pages : 586
Book Description
This book emphasizes those basic abstract methods and theories that are useful in the study of nonlinear boundary value problems. The content is developed over six chapters, providing a thorough introduction to the techniques used in the variational and topological analysis of nonlinear boundary value problems described by stationary differential operators. The authors give a systematic treatment of the basic mathematical theory and constructive methods for these classes of nonlinear equations as well as their applications to various processes arising in the applied sciences. They show how these diverse topics are connected to other important parts of mathematics, including topology, functional analysis, mathematical physics, and potential theory. Throughout the book a nice balance is maintained between rigorous mathematics and physical applications. The primary readership includes graduate students and researchers in pure and applied nonlinear analysis.
Publisher: Springer
ISBN: 3030034305
Category : Mathematics
Languages : en
Pages : 586
Book Description
This book emphasizes those basic abstract methods and theories that are useful in the study of nonlinear boundary value problems. The content is developed over six chapters, providing a thorough introduction to the techniques used in the variational and topological analysis of nonlinear boundary value problems described by stationary differential operators. The authors give a systematic treatment of the basic mathematical theory and constructive methods for these classes of nonlinear equations as well as their applications to various processes arising in the applied sciences. They show how these diverse topics are connected to other important parts of mathematics, including topology, functional analysis, mathematical physics, and potential theory. Throughout the book a nice balance is maintained between rigorous mathematics and physical applications. The primary readership includes graduate students and researchers in pure and applied nonlinear analysis.
Methods in Nonlinear Analysis
Author: Kung-Ching Chang
Publisher: Springer Science & Business Media
ISBN: 3540292322
Category : Mathematics
Languages : en
Pages : 448
Book Description
This book offers a systematic presentation of up-to-date material scattered throughout the literature from the methodology point of view. It reviews the basic theories and methods, with many interesting problems in partial and ordinary differential equations, differential geometry and mathematical physics as applications, and provides the necessary preparation for almost all important aspects in contemporary studies. All methods are illustrated by carefully chosen examples from mechanics, physics, engineering and geometry.
Publisher: Springer Science & Business Media
ISBN: 3540292322
Category : Mathematics
Languages : en
Pages : 448
Book Description
This book offers a systematic presentation of up-to-date material scattered throughout the literature from the methodology point of view. It reviews the basic theories and methods, with many interesting problems in partial and ordinary differential equations, differential geometry and mathematical physics as applications, and provides the necessary preparation for almost all important aspects in contemporary studies. All methods are illustrated by carefully chosen examples from mechanics, physics, engineering and geometry.
An Introduction to Nonlinear Analysis: Theory
Author: Zdzislaw Denkowski
Publisher: Springer
ISBN: 9780306473920
Category : Mathematics
Languages : en
Pages : 690
Book Description
An Introduction to Nonlinear Analysis: Theory is an overview of some basic, important aspects of Nonlinear Analysis, with an emphasis on those not included in the classical treatment of the field. Today Nonlinear Analysis is a very prolific part of modern mathematical analysis, with fascinating theory and many different applications ranging from mathematical physics and engineering to social sciences and economics. Topics covered in this book include the necessary background material from topology, measure theory and functional analysis (Banach space theory). The text also deals with multivalued analysis and basic features of nonsmooth analysis, providing a solid background for the more applications-oriented material of the book An Introduction to Nonlinear Analysis: Applications by the same authors. The book is self-contained and accessible to the newcomer, complete with numerous examples, exercises and solutions. It is a valuable tool, not only for specialists in the field interested in technical details, but also for scientists entering Nonlinear Analysis in search of promising directions for research.
Publisher: Springer
ISBN: 9780306473920
Category : Mathematics
Languages : en
Pages : 690
Book Description
An Introduction to Nonlinear Analysis: Theory is an overview of some basic, important aspects of Nonlinear Analysis, with an emphasis on those not included in the classical treatment of the field. Today Nonlinear Analysis is a very prolific part of modern mathematical analysis, with fascinating theory and many different applications ranging from mathematical physics and engineering to social sciences and economics. Topics covered in this book include the necessary background material from topology, measure theory and functional analysis (Banach space theory). The text also deals with multivalued analysis and basic features of nonsmooth analysis, providing a solid background for the more applications-oriented material of the book An Introduction to Nonlinear Analysis: Applications by the same authors. The book is self-contained and accessible to the newcomer, complete with numerous examples, exercises and solutions. It is a valuable tool, not only for specialists in the field interested in technical details, but also for scientists entering Nonlinear Analysis in search of promising directions for research.
Nonlinear Functional Analysis
Author: Klaus Deimling
Publisher: Springer Science & Business Media
ISBN: 3662005476
Category : Mathematics
Languages : en
Pages : 465
Book Description
topics. However, only a modest preliminary knowledge is needed. In the first chapter, where we introduce an important topological concept, the so-called topological degree for continuous maps from subsets ofRn into Rn, you need not know anything about functional analysis. Starting with Chapter 2, where infinite dimensions first appear, one should be familiar with the essential step of consider ing a sequence or a function of some sort as a point in the corresponding vector space of all such sequences or functions, whenever this abstraction is worthwhile. One should also work out the things which are proved in ยง 7 and accept certain basic principles of linear functional analysis quoted there for easier references, until they are applied in later chapters. In other words, even the 'completely linear' sections which we have included for your convenience serve only as a vehicle for progress in nonlinearity. Another point that makes the text introductory is the use of an essentially uniform mathematical language and way of thinking, one which is no doubt familiar from elementary lectures in analysis that did not worry much about its connections with algebra and topology. Of course we shall use some elementary topological concepts, which may be new, but in fact only a few remarks here and there pertain to algebraic or differential topological concepts and methods.
Publisher: Springer Science & Business Media
ISBN: 3662005476
Category : Mathematics
Languages : en
Pages : 465
Book Description
topics. However, only a modest preliminary knowledge is needed. In the first chapter, where we introduce an important topological concept, the so-called topological degree for continuous maps from subsets ofRn into Rn, you need not know anything about functional analysis. Starting with Chapter 2, where infinite dimensions first appear, one should be familiar with the essential step of consider ing a sequence or a function of some sort as a point in the corresponding vector space of all such sequences or functions, whenever this abstraction is worthwhile. One should also work out the things which are proved in ยง 7 and accept certain basic principles of linear functional analysis quoted there for easier references, until they are applied in later chapters. In other words, even the 'completely linear' sections which we have included for your convenience serve only as a vehicle for progress in nonlinearity. Another point that makes the text introductory is the use of an essentially uniform mathematical language and way of thinking, one which is no doubt familiar from elementary lectures in analysis that did not worry much about its connections with algebra and topology. Of course we shall use some elementary topological concepts, which may be new, but in fact only a few remarks here and there pertain to algebraic or differential topological concepts and methods.
Theory of Nonlinear Structural Analysis
Author: Gang Li
Publisher: John Wiley & Sons
ISBN: 1118718062
Category : Technology & Engineering
Languages : en
Pages : 372
Book Description
A comprehensive book focusing on the Force Analogy Method, a novel method for nonlinear dynamic analysis and simulation This book focusses on the Force Analogy Method, a novel method for nonlinear dynamic analysis and simulation. A review of the current nonlinear analysis method for earthquake engineering will be summarized and explained. Additionally, how the force analogy method can be used in nonlinear static analysis will be discussed through several nonlinear static examples. The emphasis of this book is to extend and develop the force analogy method to performing dynamic analysis on structures under earthquake excitations, where the force analogy method is incorporated in the flexural element, axial element, shearing element and so on will be exhibited. Moreover, the geometric nonlinearity into nonlinear dynamic analysis algorithm based on the force analogy method is included. The application of the force analogy method in seismic design for buildings and structural control area is discussed and combined with practical engineering.
Publisher: John Wiley & Sons
ISBN: 1118718062
Category : Technology & Engineering
Languages : en
Pages : 372
Book Description
A comprehensive book focusing on the Force Analogy Method, a novel method for nonlinear dynamic analysis and simulation This book focusses on the Force Analogy Method, a novel method for nonlinear dynamic analysis and simulation. A review of the current nonlinear analysis method for earthquake engineering will be summarized and explained. Additionally, how the force analogy method can be used in nonlinear static analysis will be discussed through several nonlinear static examples. The emphasis of this book is to extend and develop the force analogy method to performing dynamic analysis on structures under earthquake excitations, where the force analogy method is incorporated in the flexural element, axial element, shearing element and so on will be exhibited. Moreover, the geometric nonlinearity into nonlinear dynamic analysis algorithm based on the force analogy method is included. The application of the force analogy method in seismic design for buildings and structural control area is discussed and combined with practical engineering.
Geometrical Methods of Nonlinear Analysis
Author: Alexander Krasnosel'skii
Publisher: Springer
ISBN: 9783642694110
Category : Mathematics
Languages : en
Pages : 0
Book Description
Geometrical (in particular, topological) methods in nonlinear analysis were originally invented by Banach, Birkhoff, Kellogg, Schauder, Leray, and others in existence proofs. Since about the fifties, these methods turned out to be essentially the sole approach to a variety of new problems: the investigation of iteration processes and other procedures in numerical analysis, in bifur cation problems and branching of solutions, estimates on the number of solutions and criteria for the existence of nonzero solutions, the analysis of the structure of the solution set, etc. These methods have been widely applied to the theory of forced vibrations and auto-oscillations, to various problems in the theory of elasticity and fluid. mechanics, to control theory, theoretical physics, and various parts of mathematics. At present, nonlinear analysis along with its geometrical, topological, analytical, variational, and other methods is developing tremendously thanks to research work in many countries. Totally new ideas have been advanced, difficult problems have been solved, and new applications have been indicated. To enumerate the publications of the last few years one would need dozens of pages. On the other hand, many problems of non linear analysis are still far from a solution (problems arising from the internal development of mathematics and, in particular, problems arising in the process of interpreting new problems in the natural sciences). We hope that the English edition of our book will contribute to the further propagation of the ideas of nonlinear analysis.
Publisher: Springer
ISBN: 9783642694110
Category : Mathematics
Languages : en
Pages : 0
Book Description
Geometrical (in particular, topological) methods in nonlinear analysis were originally invented by Banach, Birkhoff, Kellogg, Schauder, Leray, and others in existence proofs. Since about the fifties, these methods turned out to be essentially the sole approach to a variety of new problems: the investigation of iteration processes and other procedures in numerical analysis, in bifur cation problems and branching of solutions, estimates on the number of solutions and criteria for the existence of nonzero solutions, the analysis of the structure of the solution set, etc. These methods have been widely applied to the theory of forced vibrations and auto-oscillations, to various problems in the theory of elasticity and fluid. mechanics, to control theory, theoretical physics, and various parts of mathematics. At present, nonlinear analysis along with its geometrical, topological, analytical, variational, and other methods is developing tremendously thanks to research work in many countries. Totally new ideas have been advanced, difficult problems have been solved, and new applications have been indicated. To enumerate the publications of the last few years one would need dozens of pages. On the other hand, many problems of non linear analysis are still far from a solution (problems arising from the internal development of mathematics and, in particular, problems arising in the process of interpreting new problems in the natural sciences). We hope that the English edition of our book will contribute to the further propagation of the ideas of nonlinear analysis.
Computational Methods in Nonlinear Analysis
Author: Ioannis K. Argyros
Publisher: World Scientific
ISBN: 9814405833
Category : Mathematics
Languages : en
Pages : 592
Book Description
The field of computational sciences has seen a considerable development in mathematics, engineering sciences, and economic equilibrium theory. Researchers in this field are faced with the problem of solving a variety of equations or variational inequalities. We note that in computational sciences, the practice of numerical analysis for finding such solutions is essentially connected to variants of Newton's method. The efficient computational methods for finding the solutions of fixed point problems, nonlinear equations and variational inclusions are the first goal of the present book. The second goal is the applications of these methods in nonlinear problems and the connection with fixed point theory. This book is intended for researchers in computational sciences, and as a reference book for an advanced computational methods in nonlinear analysis. We collect the recent results on the convergence analysis of numerical algorithms in both finite-dimensional and infinite-dimensional spaces, and present several applications and connections with fixed point theory. The book contains abundant and updated bibliography, and provides comparison between various investigations made in recent years in the field of computational nonlinear analysis.
Publisher: World Scientific
ISBN: 9814405833
Category : Mathematics
Languages : en
Pages : 592
Book Description
The field of computational sciences has seen a considerable development in mathematics, engineering sciences, and economic equilibrium theory. Researchers in this field are faced with the problem of solving a variety of equations or variational inequalities. We note that in computational sciences, the practice of numerical analysis for finding such solutions is essentially connected to variants of Newton's method. The efficient computational methods for finding the solutions of fixed point problems, nonlinear equations and variational inclusions are the first goal of the present book. The second goal is the applications of these methods in nonlinear problems and the connection with fixed point theory. This book is intended for researchers in computational sciences, and as a reference book for an advanced computational methods in nonlinear analysis. We collect the recent results on the convergence analysis of numerical algorithms in both finite-dimensional and infinite-dimensional spaces, and present several applications and connections with fixed point theory. The book contains abundant and updated bibliography, and provides comparison between various investigations made in recent years in the field of computational nonlinear analysis.
Variational Methods in Nonlinear Analysis
Author: Dimitrios C. Kravvaritis
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110647451
Category : Mathematics
Languages : en
Pages : 584
Book Description
This well-thought-out book covers the fundamentals of nonlinear analysis, with a particular focus on variational methods and their applications. Starting from preliminaries in functional analysis, it expands in several directions such as Banach spaces, fixed point theory, nonsmooth analysis, minimax theory, variational calculus and inequalities, critical point theory, monotone, maximal monotone and pseudomonotone operators, and evolution problems.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110647451
Category : Mathematics
Languages : en
Pages : 584
Book Description
This well-thought-out book covers the fundamentals of nonlinear analysis, with a particular focus on variational methods and their applications. Starting from preliminaries in functional analysis, it expands in several directions such as Banach spaces, fixed point theory, nonsmooth analysis, minimax theory, variational calculus and inequalities, critical point theory, monotone, maximal monotone and pseudomonotone operators, and evolution problems.
An Introduction to Nonlinear Analysis
Author: Martin Schechter
Publisher: Cambridge University Press
ISBN: 9780521843973
Category : Mathematics
Languages : en
Pages : 380
Book Description
The techniques that can be used to solve non-linear problems are far different than those that are used to solve linear problems. Many courses in analysis and applied mathematics attack linear cases simply because they are easier to solve and do not require a large theoretical background in order to approach them. Professor Schechter's 2005 book is devoted to non-linear methods using the least background material possible and the simplest linear techniques. An understanding of the tools for solving non-linear problems is developed whilst demonstrating their application to problems in one dimension and then leading to higher dimensions. The reader is guided using simple exposition and proof, assuming a minimal set of pre-requisites. For completion, a set of appendices covering essential basics in functional analysis and metric spaces is included, making this ideal as an accompanying text on an upper-undergraduate or graduate course, or even for self-study.
Publisher: Cambridge University Press
ISBN: 9780521843973
Category : Mathematics
Languages : en
Pages : 380
Book Description
The techniques that can be used to solve non-linear problems are far different than those that are used to solve linear problems. Many courses in analysis and applied mathematics attack linear cases simply because they are easier to solve and do not require a large theoretical background in order to approach them. Professor Schechter's 2005 book is devoted to non-linear methods using the least background material possible and the simplest linear techniques. An understanding of the tools for solving non-linear problems is developed whilst demonstrating their application to problems in one dimension and then leading to higher dimensions. The reader is guided using simple exposition and proof, assuming a minimal set of pre-requisites. For completion, a set of appendices covering essential basics in functional analysis and metric spaces is included, making this ideal as an accompanying text on an upper-undergraduate or graduate course, or even for self-study.
Frequency-domain Methods for Nonlinear Analysis
Author: Gennadi? Alekseevich Leonov
Publisher: World Scientific
ISBN: 9789810221461
Category : Science
Languages : en
Pages : 522
Book Description
This book deals with the investigation of global attractors of nonlinear dynamical systems. The exposition proceeds from the simplest attractor of a single equilibrium to more complicated ones, i.e. to finite, denumerable and continuum equilibria sets; and further, to cycles, homoclinic and heteroclinic orbits; and finally, to strange attractors consisting of irregular unstable trajectories. On the complicated equilibria sets, the methods of Lyapunov stability theory are transferred. They are combined with stability techniques specially elaborated for such sets. The results are formulated as frequency-domain criteria. The methods connected with the theorems of existence of cycles and homoclinic orbits are developed. The estimates of Hausdorff dimensions of attractors are presented.
Publisher: World Scientific
ISBN: 9789810221461
Category : Science
Languages : en
Pages : 522
Book Description
This book deals with the investigation of global attractors of nonlinear dynamical systems. The exposition proceeds from the simplest attractor of a single equilibrium to more complicated ones, i.e. to finite, denumerable and continuum equilibria sets; and further, to cycles, homoclinic and heteroclinic orbits; and finally, to strange attractors consisting of irregular unstable trajectories. On the complicated equilibria sets, the methods of Lyapunov stability theory are transferred. They are combined with stability techniques specially elaborated for such sets. The results are formulated as frequency-domain criteria. The methods connected with the theorems of existence of cycles and homoclinic orbits are developed. The estimates of Hausdorff dimensions of attractors are presented.