Nonlinear Programming

Nonlinear Programming PDF Author: Mokhtar S. Bazaraa
Publisher: John Wiley & Sons
ISBN: 1118626303
Category : Mathematics
Languages : en
Pages : 867

Get Book Here

Book Description
COMPREHENSIVE COVERAGE OF NONLINEAR PROGRAMMING THEORY AND ALGORITHMS, THOROUGHLY REVISED AND EXPANDED Nonlinear Programming: Theory and Algorithms—now in an extensively updated Third Edition—addresses the problem of optimizing an objective function in the presence of equality and inequality constraints. Many realistic problems cannot be adequately represented as a linear program owing to the nature of the nonlinearity of the objective function and/or the nonlinearity of any constraints. The Third Edition begins with a general introduction to nonlinear programming with illustrative examples and guidelines for model construction. Concentration on the three major parts of nonlinear programming is provided: Convex analysis with discussion of topological properties of convex sets, separation and support of convex sets, polyhedral sets, extreme points and extreme directions of polyhedral sets, and linear programming Optimality conditions and duality with coverage of the nature, interpretation, and value of the classical Fritz John (FJ) and the Karush-Kuhn-Tucker (KKT) optimality conditions; the interrelationships between various proposed constraint qualifications; and Lagrangian duality and saddle point optimality conditions Algorithms and their convergence, with a presentation of algorithms for solving both unconstrained and constrained nonlinear programming problems Important features of the Third Edition include: New topics such as second interior point methods, nonconvex optimization, nondifferentiable optimization, and more Updated discussion and new applications in each chapter Detailed numerical examples and graphical illustrations Essential coverage of modeling and formulating nonlinear programs Simple numerical problems Advanced theoretical exercises The book is a solid reference for professionals as well as a useful text for students in the fields of operations research, management science, industrial engineering, applied mathematics, and also in engineering disciplines that deal with analytical optimization techniques. The logical and self-contained format uniquely covers nonlinear programming techniques with a great depth of information and an abundance of valuable examples and illustrations that showcase the most current advances in nonlinear problems.

Nonlinear Optimization

Nonlinear Optimization PDF Author: Francisco J. Aragón
Publisher: Springer
ISBN: 3030111849
Category : Mathematics
Languages : en
Pages : 350

Get Book Here

Book Description
This textbook on nonlinear optimization focuses on model building, real world problems, and applications of optimization models to natural and social sciences. Organized into two parts, this book may be used as a primary text for courses on convex optimization and non-convex optimization. Definitions, proofs, and numerical methods are well illustrated and all chapters contain compelling exercises. The exercises emphasize fundamental theoretical results on optimality and duality theorems, numerical methods with or without constraints, and derivative-free optimization. Selected solutions are given. Applications to theoretical results and numerical methods are highlighted to help students comprehend methods and techniques.

Linear and Nonlinear Programming

Linear and Nonlinear Programming PDF Author: David G. Luenberger
Publisher: Springer Nature
ISBN: 3030854507
Category : Business & Economics
Languages : en
Pages : 609

Get Book Here

Book Description
The 5th edition of this classic textbook covers the central concepts of practical optimization techniques, with an emphasis on methods that are both state-of-the-art and popular. One major insight is the connection between the purely analytical character of an optimization problem and the behavior of algorithms used to solve that problem. End-of-chapter exercises are provided for all chapters. The material is organized into three separate parts. Part I offers a self-contained introduction to linear programming. The presentation in this part is fairly conventional, covering the main elements of the underlying theory of linear programming, many of the most effective numerical algorithms, and many of its important special applications. Part II, which is independent of Part I, covers the theory of unconstrained optimization, including both derivations of the appropriate optimality conditions and an introduction to basic algorithms. This part of the book explores the general properties of algorithms and defines various notions of convergence. In turn, Part III extends the concepts developed in the second part to constrained optimization problems. Except for a few isolated sections, this part is also independent of Part I. As such, Parts II and III can easily be used without reading Part I and, in fact, the book has been used in this way at many universities. New to this edition are popular topics in data science and machine learning, such as the Markov Decision Process, Farkas’ lemma, convergence speed analysis, duality theories and applications, various first-order methods, stochastic gradient method, mirror-descent method, Frank-Wolf method, ALM/ADMM method, interior trust-region method for non-convex optimization, distributionally robust optimization, online linear programming, semidefinite programming for sensor-network localization, and infeasibility detection for nonlinear optimization.

Linear and Nonlinear Optimization

Linear and Nonlinear Optimization PDF Author: Richard W. Cottle
Publisher: Springer
ISBN: 1493970550
Category : Business & Economics
Languages : en
Pages : 644

Get Book Here

Book Description
​This textbook on Linear and Nonlinear Optimization is intended for graduate and advanced undergraduate students in operations research and related fields. It is both literate and mathematically strong, yet requires no prior course in optimization. As suggested by its title, the book is divided into two parts covering in their individual chapters LP Models and Applications; Linear Equations and Inequalities; The Simplex Algorithm; Simplex Algorithm Continued; Duality and the Dual Simplex Algorithm; Postoptimality Analyses; Computational Considerations; Nonlinear (NLP) Models and Applications; Unconstrained Optimization; Descent Methods; Optimality Conditions; Problems with Linear Constraints; Problems with Nonlinear Constraints; Interior-Point Methods; and an Appendix covering Mathematical Concepts. Each chapter ends with a set of exercises. The book is based on lecture notes the authors have used in numerous optimization courses the authors have taught at Stanford University. It emphasizes modeling and numerical algorithms for optimization with continuous (not integer) variables. The discussion presents the underlying theory without always focusing on formal mathematical proofs (which can be found in cited references). Another feature of this book is its inclusion of cultural and historical matters, most often appearing among the footnotes. "This book is a real gem. The authors do a masterful job of rigorously presenting all of the relevant theory clearly and concisely while managing to avoid unnecessary tedious mathematical details. This is an ideal book for teaching a one or two semester masters-level course in optimization – it broadly covers linear and nonlinear programming effectively balancing modeling, algorithmic theory, computation, implementation, illuminating historical facts, and numerous interesting examples and exercises. Due to the clarity of the exposition, this book also serves as a valuable reference for self-study." Professor Ilan Adler, IEOR Department, UC Berkeley "A carefully crafted introduction to the main elements and applications of mathematical optimization. This volume presents the essential concepts of linear and nonlinear programming in an accessible format filled with anecdotes, examples, and exercises that bring the topic to life. The authors plumb their decades of experience in optimization to provide an enriching layer of historical context. Suitable for advanced undergraduates and masters students in management science, operations research, and related fields." Michael P. Friedlander, IBM Professor of Computer Science, Professor of Mathematics, University of British Columbia

Nonlinear Programming

Nonlinear Programming PDF Author: J. B. Rosen
Publisher: Elsevier
ISBN: 148327246X
Category : Mathematics
Languages : en
Pages : 503

Get Book Here

Book Description
Nonlinear Programming contains the proceedings of a Symposium on Nonlinear Programming held in Madison, Wisconsin on May 4-6, 1970. This book emphasizes algorithms and related theories that lead to efficient computational methods for solving nonlinear programming problems. This compilation consists of 17 chapters. Chapters 1 to 9 are concerned primarily with computational algorithms, while Chapters 10 to 13 are devoted to theoretical aspects of nonlinear programming. Certain applications of nonlinear programming are considered in Chapters 14 to 17. The algorithms for nonlinear constraint problems, investigation of convergence rates, and use of nonlinear programming for approximation are also covered in this text. This publication is a good source for students and researchers concerned with nonlinear programming.

Mixed Integer Nonlinear Programming

Mixed Integer Nonlinear Programming PDF Author: Jon Lee
Publisher: Springer Science & Business Media
ISBN: 1461419271
Category : Mathematics
Languages : en
Pages : 687

Get Book Here

Book Description
Many engineering, operations, and scientific applications include a mixture of discrete and continuous decision variables and nonlinear relationships involving the decision variables that have a pronounced effect on the set of feasible and optimal solutions. Mixed-integer nonlinear programming (MINLP) problems combine the numerical difficulties of handling nonlinear functions with the challenge of optimizing in the context of nonconvex functions and discrete variables. MINLP is one of the most flexible modeling paradigms available for optimization; but because its scope is so broad, in the most general cases it is hopelessly intractable. Nonetheless, an expanding body of researchers and practitioners — including chemical engineers, operations researchers, industrial engineers, mechanical engineers, economists, statisticians, computer scientists, operations managers, and mathematical programmers — are interested in solving large-scale MINLP instances.

Non-linear convex programming with linear constraints

Non-linear convex programming with linear constraints PDF Author: Chung Jerry Lin
Publisher:
ISBN:
Category : Computer programming
Languages : en
Pages : 378

Get Book Here

Book Description


Nonlinear Programming for Operations Research

Nonlinear Programming for Operations Research PDF Author: Donald M. Simmons
Publisher: Prentice Hall
ISBN:
Category : Mathematics
Languages : en
Pages : 472

Get Book Here

Book Description
Introduction to nonlinear programming; Review of linear programming; Further mathematical background; Classical uncostrained optimization; Optimum-seeking by experimentation; Lagrange multipliers and kuhn-tucker theory; Quadratic programming; Algorithms for linearly constrained problems; Algorithms for nonlinear constrained problems.

Optimization Under Constraints

Optimization Under Constraints PDF Author: Peter Whittle
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 264

Get Book Here

Book Description
First thoughts on maximization; Constrained maximization and lagrangian methods; The strong lagrangian principle: convexity; Linear programming; Some particular linear problems; Some problems with linear constraints; Nonlinear constraints, and stochastic effects; Numerical methods; Vector maximization problems.

Convex Optimization

Convex Optimization PDF Author: Stephen P. Boyd
Publisher: Cambridge University Press
ISBN: 9780521833783
Category : Business & Economics
Languages : en
Pages : 744

Get Book Here

Book Description
Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.