Author: Jørgen Rammer
Publisher: Cambridge University Press
ISBN: 9780521188005
Category : Science
Languages : en
Pages : 0
Book Description
Quantum field theory is the application of quantum mechanics to systems with infinitely many degrees of freedom. This 2007 textbook presents quantum field theoretical applications to systems out of equilibrium. It introduces the real-time approach to non-equilibrium statistical mechanics and the quantum field theory of non-equilibrium states in general. It offers two ways of learning how to study non-equilibrium states of many-body systems: the mathematical canonical way and an easy intuitive way using Feynman diagrams. The latter provides an easy introduction to the powerful functional methods of field theory, and the use of Feynman diagrams to study classical stochastic dynamics is considered in detail. The developed real-time technique is applied to study numerous phenomena in many-body systems. Complete with numerous exercises to aid self-study, this textbook is suitable for graduate students in statistical mechanics and condensed matter physics.
Quantum Field Theory of Non-equilibrium States
Author: Jørgen Rammer
Publisher: Cambridge University Press
ISBN: 9780521188005
Category : Science
Languages : en
Pages : 0
Book Description
Quantum field theory is the application of quantum mechanics to systems with infinitely many degrees of freedom. This 2007 textbook presents quantum field theoretical applications to systems out of equilibrium. It introduces the real-time approach to non-equilibrium statistical mechanics and the quantum field theory of non-equilibrium states in general. It offers two ways of learning how to study non-equilibrium states of many-body systems: the mathematical canonical way and an easy intuitive way using Feynman diagrams. The latter provides an easy introduction to the powerful functional methods of field theory, and the use of Feynman diagrams to study classical stochastic dynamics is considered in detail. The developed real-time technique is applied to study numerous phenomena in many-body systems. Complete with numerous exercises to aid self-study, this textbook is suitable for graduate students in statistical mechanics and condensed matter physics.
Publisher: Cambridge University Press
ISBN: 9780521188005
Category : Science
Languages : en
Pages : 0
Book Description
Quantum field theory is the application of quantum mechanics to systems with infinitely many degrees of freedom. This 2007 textbook presents quantum field theoretical applications to systems out of equilibrium. It introduces the real-time approach to non-equilibrium statistical mechanics and the quantum field theory of non-equilibrium states in general. It offers two ways of learning how to study non-equilibrium states of many-body systems: the mathematical canonical way and an easy intuitive way using Feynman diagrams. The latter provides an easy introduction to the powerful functional methods of field theory, and the use of Feynman diagrams to study classical stochastic dynamics is considered in detail. The developed real-time technique is applied to study numerous phenomena in many-body systems. Complete with numerous exercises to aid self-study, this textbook is suitable for graduate students in statistical mechanics and condensed matter physics.
Nonequilibrium Quantum Field Theory
Author: Esteban A. Calzetta
Publisher: Cambridge University Press
ISBN: 1009289985
Category : Science
Languages : en
Pages : 553
Book Description
This 2008 book, reissued as OA, captures the essence of nonequilibrium quantum field theory, graduate students and researchers.
Publisher: Cambridge University Press
ISBN: 1009289985
Category : Science
Languages : en
Pages : 553
Book Description
This 2008 book, reissued as OA, captures the essence of nonequilibrium quantum field theory, graduate students and researchers.
Non-equilibrium Energy Transformation Processes
Author: Viktor Holubec
Publisher: Springer
ISBN: 3319070916
Category : Science
Languages : en
Pages : 161
Book Description
Various experimental techniques have been advanced in recent years to measure non-equilibrium energy transformations on the microscopic scale of single molecules. In general, the systems studied in the corresponding experiments are exposed to strong thermal fluctuations and thus the relevant energetic variables such as work and heat become stochastic. This thesis addresses challenging theoretical problems in this active field of current research: 1) Exact analytical solutions of work and heat distributions for isothermal non-equilibrium processes in suitable models are obtained; 2) Corresponding solutions for cyclic processes involving two different heat reservoirs are found; 3) Optimization of periodic driving protocols for such cyclic processes with respect to maximal output power, efficiency and minimal power fluctuations is studied. The exact solutions for work and heat distributions provide a reference for theoretical investigations of more complicated models, giving insight into the structure of the tail of work distributions and serving as valuable test cases for simulations of the underlying stochastic processes.
Publisher: Springer
ISBN: 3319070916
Category : Science
Languages : en
Pages : 161
Book Description
Various experimental techniques have been advanced in recent years to measure non-equilibrium energy transformations on the microscopic scale of single molecules. In general, the systems studied in the corresponding experiments are exposed to strong thermal fluctuations and thus the relevant energetic variables such as work and heat become stochastic. This thesis addresses challenging theoretical problems in this active field of current research: 1) Exact analytical solutions of work and heat distributions for isothermal non-equilibrium processes in suitable models are obtained; 2) Corresponding solutions for cyclic processes involving two different heat reservoirs are found; 3) Optimization of periodic driving protocols for such cyclic processes with respect to maximal output power, efficiency and minimal power fluctuations is studied. The exact solutions for work and heat distributions provide a reference for theoretical investigations of more complicated models, giving insight into the structure of the tail of work distributions and serving as valuable test cases for simulations of the underlying stochastic processes.
Field Theory of Non-Equilibrium Systems
Author: Alex Kamenev
Publisher: Cambridge University Press
ISBN: 1139500295
Category : Science
Languages : en
Pages : 356
Book Description
The physics of non-equilibrium many-body systems is one of the most rapidly expanding areas of theoretical physics. Traditionally used in the study of laser physics and superconducting kinetics, these techniques have more recently found applications in the study of dynamics of cold atomic gases, mesoscopic and nano-mechanical systems. The book gives a self-contained presentation of the modern functional approach to non-equilibrium field-theoretical methods. They are applied to examples ranging from biophysics to the kinetics of superfluids and superconductors. Its step-by-step treatment gives particular emphasis to the pedagogical aspects, making it ideal as a reference for advanced graduate students and researchers in condensed matter physics.
Publisher: Cambridge University Press
ISBN: 1139500295
Category : Science
Languages : en
Pages : 356
Book Description
The physics of non-equilibrium many-body systems is one of the most rapidly expanding areas of theoretical physics. Traditionally used in the study of laser physics and superconducting kinetics, these techniques have more recently found applications in the study of dynamics of cold atomic gases, mesoscopic and nano-mechanical systems. The book gives a self-contained presentation of the modern functional approach to non-equilibrium field-theoretical methods. They are applied to examples ranging from biophysics to the kinetics of superfluids and superconductors. Its step-by-step treatment gives particular emphasis to the pedagogical aspects, making it ideal as a reference for advanced graduate students and researchers in condensed matter physics.
Quantum Gases
Author: Nick Proukakis
Publisher: World Scientific
ISBN: 1848168128
Category : Science
Languages : en
Pages : 579
Book Description
This volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics.
Publisher: World Scientific
ISBN: 1848168128
Category : Science
Languages : en
Pages : 579
Book Description
This volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics.
Time's Arrows and Quantum Measurement
Author: Lawrence S. Schulman
Publisher: Cambridge University Press
ISBN: 9780521567756
Category : Science
Languages : en
Pages : 370
Book Description
An introduction to the arrow of time and a new, related, theory of quantum measurement.
Publisher: Cambridge University Press
ISBN: 9780521567756
Category : Science
Languages : en
Pages : 370
Book Description
An introduction to the arrow of time and a new, related, theory of quantum measurement.
The Statistical Mechanics of Irreversible Phenomena
Author: Pierre Gaspard
Publisher: Cambridge University Press
ISBN: 1108580467
Category : Science
Languages : en
Pages : 689
Book Description
This book provides a comprehensive and self-contained overview of recent progress in nonequilibrium statistical mechanics, in particular, the discovery of fluctuation relations and other time-reversal symmetry relations. The significance of these advances is that nonequilibrium statistical physics is no longer restricted to the linear regimes close to equilibrium, but extends to fully nonlinear regimes. These important new results have inspired the development of a unifying framework for describing both the microscopic dynamics of collections of particles, and the macroscopic hydrodynamics and thermodynamics of matter itself. The book discusses the significance of this theoretical framework in relation to a broad range of nonequilibrium processes, from the nanoscale to the macroscale, and is essential reading for researchers and graduate students in statistical physics, theoretical chemistry and biological physics.
Publisher: Cambridge University Press
ISBN: 1108580467
Category : Science
Languages : en
Pages : 689
Book Description
This book provides a comprehensive and self-contained overview of recent progress in nonequilibrium statistical mechanics, in particular, the discovery of fluctuation relations and other time-reversal symmetry relations. The significance of these advances is that nonequilibrium statistical physics is no longer restricted to the linear regimes close to equilibrium, but extends to fully nonlinear regimes. These important new results have inspired the development of a unifying framework for describing both the microscopic dynamics of collections of particles, and the macroscopic hydrodynamics and thermodynamics of matter itself. The book discusses the significance of this theoretical framework in relation to a broad range of nonequilibrium processes, from the nanoscale to the macroscale, and is essential reading for researchers and graduate students in statistical physics, theoretical chemistry and biological physics.
Condensed Matter Field Theory
Author: Alexander Altland
Publisher: Cambridge University Press
ISBN: 0521769752
Category : Science
Languages : en
Pages : 785
Book Description
This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.
Publisher: Cambridge University Press
ISBN: 0521769752
Category : Science
Languages : en
Pages : 785
Book Description
This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.
Condensed Matter Field Theory
Author: Alexander Altland
Publisher: Cambridge University Press
ISBN: 1108786693
Category : Science
Languages : en
Pages : 826
Book Description
Building on the success of prior editions, this graduate text provides a comprehensive introduction to core concepts and methods of quantum field theory in condensed matter. It covers modern advances, from condensation phenomena and superfluidity to gauge theory, non-equilibrium phenomena and topological quantum matter.
Publisher: Cambridge University Press
ISBN: 1108786693
Category : Science
Languages : en
Pages : 826
Book Description
Building on the success of prior editions, this graduate text provides a comprehensive introduction to core concepts and methods of quantum field theory in condensed matter. It covers modern advances, from condensation phenomena and superfluidity to gauge theory, non-equilibrium phenomena and topological quantum matter.
Nonequilibrium Statistical Mechanics
Author: Biman Bagchi
Publisher: CRC Press
ISBN: 100099693X
Category : Science
Languages : en
Pages : 562
Book Description
Nonequilibrium statistical mechanics (NESM), practically synonymous with time-dependent statistical mechanics (TDSM), is a beautiful and profound subject, vast in scope, diverse in applications, and indispensable in understanding the changing natural phenomena we encounter in the physical, chemical and biological world. Although time dependent phenomena have been studied from antiquity, the modern subject, the nonequilibrium statistical mechanics, has its genesis in Boltzmann’s 1872 classic paper that aimed at extending Maxwell’s kinetic theory of gases by including intermolecular interactions. Subsequent development of the subject drew upon the seminal work of Einstein and Langevin on Brownian motion, Rayleigh and Stokes on hydrodynamics, and on the works of Onsager, Prigogine, Kramers, Kubo, Mori, and Zwanzig. One major goal of this book is to develop and present NESM in an organized fashion so that students can appreciate and understand the flow of the subject from postulates to practical uses. This book takes the students on a journey from fundamentals to applications, mostly using simple mathematics, and fundamental concepts. With the advent of computers and computational packages and techniques, a deep intuitive understanding can allow the students to tackle fairly complex problems, like proteins in lipid membranes or solvation of ions in electrolytes used in batteries. The subject is still evolving rapidly, with forays into complex biological events, and materials science. Nonequilibrium Statistical Mechanics: An Introduction with Applications is, thus, an introductory text that aims to provide students with a background and skill essential to study and understand time-dependent (relaxation) phenomena. It will allow students to calculate transport properties like diffusion and conductivity. The book also teaches the methods to calculate reaction rate on a multi-dimensional energy surface, in another such application. For a beginner in the field, especially for one with an aim to study chemistry and biology, and also physics, one major difficulty faced is a lack of organization of the available study material. Since NESM is a vast subject with many different theoretical tools, the above poses a problem. This book lays the foundations towards understanding time- dependent phenomena in a simple and systematic fashion. It is accessible to students and researchers who have basic training in physics and mathematics. The book can be used to teach advanced undergraduates. Some involved topics, like the projection operator technique and mode coupling theory, are more suitable for Ph.D. level.
Publisher: CRC Press
ISBN: 100099693X
Category : Science
Languages : en
Pages : 562
Book Description
Nonequilibrium statistical mechanics (NESM), practically synonymous with time-dependent statistical mechanics (TDSM), is a beautiful and profound subject, vast in scope, diverse in applications, and indispensable in understanding the changing natural phenomena we encounter in the physical, chemical and biological world. Although time dependent phenomena have been studied from antiquity, the modern subject, the nonequilibrium statistical mechanics, has its genesis in Boltzmann’s 1872 classic paper that aimed at extending Maxwell’s kinetic theory of gases by including intermolecular interactions. Subsequent development of the subject drew upon the seminal work of Einstein and Langevin on Brownian motion, Rayleigh and Stokes on hydrodynamics, and on the works of Onsager, Prigogine, Kramers, Kubo, Mori, and Zwanzig. One major goal of this book is to develop and present NESM in an organized fashion so that students can appreciate and understand the flow of the subject from postulates to practical uses. This book takes the students on a journey from fundamentals to applications, mostly using simple mathematics, and fundamental concepts. With the advent of computers and computational packages and techniques, a deep intuitive understanding can allow the students to tackle fairly complex problems, like proteins in lipid membranes or solvation of ions in electrolytes used in batteries. The subject is still evolving rapidly, with forays into complex biological events, and materials science. Nonequilibrium Statistical Mechanics: An Introduction with Applications is, thus, an introductory text that aims to provide students with a background and skill essential to study and understand time-dependent (relaxation) phenomena. It will allow students to calculate transport properties like diffusion and conductivity. The book also teaches the methods to calculate reaction rate on a multi-dimensional energy surface, in another such application. For a beginner in the field, especially for one with an aim to study chemistry and biology, and also physics, one major difficulty faced is a lack of organization of the available study material. Since NESM is a vast subject with many different theoretical tools, the above poses a problem. This book lays the foundations towards understanding time- dependent phenomena in a simple and systematic fashion. It is accessible to students and researchers who have basic training in physics and mathematics. The book can be used to teach advanced undergraduates. Some involved topics, like the projection operator technique and mode coupling theory, are more suitable for Ph.D. level.