Author: Butch Quinto
Publisher: Apress
ISBN: 1484231473
Category : Computers
Languages : en
Pages : 572
Book Description
Utilize this practical and easy-to-follow guide to modernize traditional enterprise data warehouse and business intelligence environments with next-generation big data technologies. Next-Generation Big Data takes a holistic approach, covering the most important aspects of modern enterprise big data. The book covers not only the main technology stack but also the next-generation tools and applications used for big data warehousing, data warehouse optimization, real-time and batch data ingestion and processing, real-time data visualization, big data governance, data wrangling, big data cloud deployments, and distributed in-memory big data computing. Finally, the book has an extensive and detailed coverage of big data case studies from Navistar, Cerner, British Telecom, Shopzilla, Thomson Reuters, and Mastercard. What You’ll Learn Install Apache Kudu, Impala, and Spark to modernize enterprise data warehouse and business intelligence environments, complete with real-world, easy-to-follow examples, and practical advice Integrate HBase, Solr, Oracle, SQL Server, MySQL, Flume, Kafka, HDFS, and Amazon S3 with Apache Kudu, Impala, and Spark Use StreamSets, Talend, Pentaho, and CDAP for real-time and batch data ingestion and processing Utilize Trifacta, Alteryx, and Datameer for data wrangling and interactive data processing Turbocharge Spark with Alluxio, a distributed in-memory storage platform Deploy big data in the cloud using Cloudera Director Perform real-time data visualization and time series analysis using Zoomdata, Apache Kudu, Impala, and Spark Understand enterprise big data topics such as big data governance, metadata management, data lineage, impact analysis, and policy enforcement, and how to use Cloudera Navigator to perform common data governance tasks Implement big data use cases such as big data warehousing, data warehouse optimization, Internet of Things, real-time data ingestion and analytics, complex event processing, and scalable predictive modeling Study real-world big data case studies from innovative companies, including Navistar, Cerner, British Telecom, Shopzilla, Thomson Reuters, and Mastercard Who This Book Is For BI and big data warehouse professionals interested in gaining practical and real-world insight into next-generation big data processing and analytics using Apache Kudu, Impala, and Spark; and those who want to learn more about other advanced enterprise topics
Next-Generation Big Data
Author: Butch Quinto
Publisher: Apress
ISBN: 1484231473
Category : Computers
Languages : en
Pages : 572
Book Description
Utilize this practical and easy-to-follow guide to modernize traditional enterprise data warehouse and business intelligence environments with next-generation big data technologies. Next-Generation Big Data takes a holistic approach, covering the most important aspects of modern enterprise big data. The book covers not only the main technology stack but also the next-generation tools and applications used for big data warehousing, data warehouse optimization, real-time and batch data ingestion and processing, real-time data visualization, big data governance, data wrangling, big data cloud deployments, and distributed in-memory big data computing. Finally, the book has an extensive and detailed coverage of big data case studies from Navistar, Cerner, British Telecom, Shopzilla, Thomson Reuters, and Mastercard. What You’ll Learn Install Apache Kudu, Impala, and Spark to modernize enterprise data warehouse and business intelligence environments, complete with real-world, easy-to-follow examples, and practical advice Integrate HBase, Solr, Oracle, SQL Server, MySQL, Flume, Kafka, HDFS, and Amazon S3 with Apache Kudu, Impala, and Spark Use StreamSets, Talend, Pentaho, and CDAP for real-time and batch data ingestion and processing Utilize Trifacta, Alteryx, and Datameer for data wrangling and interactive data processing Turbocharge Spark with Alluxio, a distributed in-memory storage platform Deploy big data in the cloud using Cloudera Director Perform real-time data visualization and time series analysis using Zoomdata, Apache Kudu, Impala, and Spark Understand enterprise big data topics such as big data governance, metadata management, data lineage, impact analysis, and policy enforcement, and how to use Cloudera Navigator to perform common data governance tasks Implement big data use cases such as big data warehousing, data warehouse optimization, Internet of Things, real-time data ingestion and analytics, complex event processing, and scalable predictive modeling Study real-world big data case studies from innovative companies, including Navistar, Cerner, British Telecom, Shopzilla, Thomson Reuters, and Mastercard Who This Book Is For BI and big data warehouse professionals interested in gaining practical and real-world insight into next-generation big data processing and analytics using Apache Kudu, Impala, and Spark; and those who want to learn more about other advanced enterprise topics
Publisher: Apress
ISBN: 1484231473
Category : Computers
Languages : en
Pages : 572
Book Description
Utilize this practical and easy-to-follow guide to modernize traditional enterprise data warehouse and business intelligence environments with next-generation big data technologies. Next-Generation Big Data takes a holistic approach, covering the most important aspects of modern enterprise big data. The book covers not only the main technology stack but also the next-generation tools and applications used for big data warehousing, data warehouse optimization, real-time and batch data ingestion and processing, real-time data visualization, big data governance, data wrangling, big data cloud deployments, and distributed in-memory big data computing. Finally, the book has an extensive and detailed coverage of big data case studies from Navistar, Cerner, British Telecom, Shopzilla, Thomson Reuters, and Mastercard. What You’ll Learn Install Apache Kudu, Impala, and Spark to modernize enterprise data warehouse and business intelligence environments, complete with real-world, easy-to-follow examples, and practical advice Integrate HBase, Solr, Oracle, SQL Server, MySQL, Flume, Kafka, HDFS, and Amazon S3 with Apache Kudu, Impala, and Spark Use StreamSets, Talend, Pentaho, and CDAP for real-time and batch data ingestion and processing Utilize Trifacta, Alteryx, and Datameer for data wrangling and interactive data processing Turbocharge Spark with Alluxio, a distributed in-memory storage platform Deploy big data in the cloud using Cloudera Director Perform real-time data visualization and time series analysis using Zoomdata, Apache Kudu, Impala, and Spark Understand enterprise big data topics such as big data governance, metadata management, data lineage, impact analysis, and policy enforcement, and how to use Cloudera Navigator to perform common data governance tasks Implement big data use cases such as big data warehousing, data warehouse optimization, Internet of Things, real-time data ingestion and analytics, complex event processing, and scalable predictive modeling Study real-world big data case studies from innovative companies, including Navistar, Cerner, British Telecom, Shopzilla, Thomson Reuters, and Mastercard Who This Book Is For BI and big data warehouse professionals interested in gaining practical and real-world insight into next-generation big data processing and analytics using Apache Kudu, Impala, and Spark; and those who want to learn more about other advanced enterprise topics
Next Generation Databases
Author: Guy Harrison
Publisher: Apress
ISBN: 1484213297
Category : Computers
Languages : en
Pages : 244
Book Description
"It’s not easy to find such a generous book on big data and databases. Fortunately, this book is the one." Feng Yu. Computing Reviews. June 28, 2016. This is a book for enterprise architects, database administrators, and developers who need to understand the latest developments in database technologies. It is the book to help you choose the correct database technology at a time when concepts such as Big Data, NoSQL and NewSQL are making what used to be an easy choice into a complex decision with significant implications. The relational database (RDBMS) model completely dominated database technology for over 20 years. Today this "one size fits all" stability has been disrupted by a relatively recent explosion of new database technologies. These paradigm-busting technologies are powering the "Big Data" and "NoSQL" revolutions, as well as forcing fundamental changes in databases across the board. Deciding to use a relational database was once truly a no-brainer, and the various commercial relational databases competed on price, performance, reliability, and ease of use rather than on fundamental architectures. Today we are faced with choices between radically different database technologies. Choosing the right database today is a complex undertaking, with serious economic and technological consequences. Next Generation Databases demystifies today’s new database technologies. The book describes what each technology was designed to solve. It shows how each technology can be used to solve real word application and business problems. Most importantly, this book highlights the architectural differences between technologies that are the critical factors to consider when choosing a database platform for new and upcoming projects. Introduces the new technologies that have revolutionized the database landscape Describes how each technology can be used to solve specific application or business challenges Reviews the most popular new wave databases and how they use these new database technologies
Publisher: Apress
ISBN: 1484213297
Category : Computers
Languages : en
Pages : 244
Book Description
"It’s not easy to find such a generous book on big data and databases. Fortunately, this book is the one." Feng Yu. Computing Reviews. June 28, 2016. This is a book for enterprise architects, database administrators, and developers who need to understand the latest developments in database technologies. It is the book to help you choose the correct database technology at a time when concepts such as Big Data, NoSQL and NewSQL are making what used to be an easy choice into a complex decision with significant implications. The relational database (RDBMS) model completely dominated database technology for over 20 years. Today this "one size fits all" stability has been disrupted by a relatively recent explosion of new database technologies. These paradigm-busting technologies are powering the "Big Data" and "NoSQL" revolutions, as well as forcing fundamental changes in databases across the board. Deciding to use a relational database was once truly a no-brainer, and the various commercial relational databases competed on price, performance, reliability, and ease of use rather than on fundamental architectures. Today we are faced with choices between radically different database technologies. Choosing the right database today is a complex undertaking, with serious economic and technological consequences. Next Generation Databases demystifies today’s new database technologies. The book describes what each technology was designed to solve. It shows how each technology can be used to solve real word application and business problems. Most importantly, this book highlights the architectural differences between technologies that are the critical factors to consider when choosing a database platform for new and upcoming projects. Introduces the new technologies that have revolutionized the database landscape Describes how each technology can be used to solve specific application or business challenges Reviews the most popular new wave databases and how they use these new database technologies
Multimodal Analytics for Next-Generation Big Data Technologies and Applications
Author: Kah Phooi Seng
Publisher: Springer
ISBN: 3319975986
Category : Computers
Languages : en
Pages : 391
Book Description
This edited book will serve as a source of reference for technologies and applications for multimodality data analytics in big data environments. After an introduction, the editors organize the book into four main parts on sentiment, affect and emotion analytics for big multimodal data; unsupervised learning strategies for big multimodal data; supervised learning strategies for big multimodal data; and multimodal big data processing and applications. The book will be of value to researchers, professionals and students in engineering and computer science, particularly those engaged with image and speech processing, multimodal information processing, data science, and artificial intelligence.
Publisher: Springer
ISBN: 3319975986
Category : Computers
Languages : en
Pages : 391
Book Description
This edited book will serve as a source of reference for technologies and applications for multimodality data analytics in big data environments. After an introduction, the editors organize the book into four main parts on sentiment, affect and emotion analytics for big multimodal data; unsupervised learning strategies for big multimodal data; supervised learning strategies for big multimodal data; and multimodal big data processing and applications. The book will be of value to researchers, professionals and students in engineering and computer science, particularly those engaged with image and speech processing, multimodal information processing, data science, and artificial intelligence.
Securing IoT and Big Data
Author: Vijayalakshmi Saravanan
Publisher: CRC Press
ISBN: 1000258513
Category : Computers
Languages : en
Pages : 191
Book Description
This book covers IoT and Big Data from a technical and business point of view. The book explains the design principles, algorithms, technical knowledge, and marketing for IoT systems. It emphasizes applications of big data and IoT. It includes scientific algorithms and key techniques for fusion of both areas. Real case applications from different industries are offering to facilitate ease of understanding the approach. The book goes on to address the significance of security algorithms in combing IoT and big data which is currently evolving in communication technologies. The book is written for researchers, professionals, and academicians from interdisciplinary and transdisciplinary areas. The readers will get an opportunity to know the conceptual ideas with step-by-step pragmatic examples which makes ease of understanding no matter the level of the reader.
Publisher: CRC Press
ISBN: 1000258513
Category : Computers
Languages : en
Pages : 191
Book Description
This book covers IoT and Big Data from a technical and business point of view. The book explains the design principles, algorithms, technical knowledge, and marketing for IoT systems. It emphasizes applications of big data and IoT. It includes scientific algorithms and key techniques for fusion of both areas. Real case applications from different industries are offering to facilitate ease of understanding the approach. The book goes on to address the significance of security algorithms in combing IoT and big data which is currently evolving in communication technologies. The book is written for researchers, professionals, and academicians from interdisciplinary and transdisciplinary areas. The readers will get an opportunity to know the conceptual ideas with step-by-step pragmatic examples which makes ease of understanding no matter the level of the reader.
Implementing Data Analytics and Architectures for Next Generation Wireless Communications
Author: Bhatt, Chintan
Publisher: IGI Global
ISBN: 1799869903
Category : Technology & Engineering
Languages : en
Pages : 227
Book Description
Wireless communication is continuously evolving to improve and be a part of our daily communication. This leads to improved quality of services and applications supported by networking technologies. We are now able to use LTE, LTE-Advanced, and other emerging technologies due to the enormous efforts that are made to improve the quality of service in cellular networks. As the future of networking is uncertain, the use of deep learning and big data analytics is a point of focus as it can work in many capacities at a variety of levels for wireless communications. Implementing Data Analytics and Architectures for Next Generation Wireless Communications addresses the existing and emerging theoretical and practical challenges in the design, development, and implementation of big data algorithms, protocols, architectures, and applications for next generation wireless communications and their applications in smart cities. The chapters of this book bring together academics and industrial practitioners to exchange, discuss, and implement the latest innovations and applications of data analytics in advanced networks. Specific topics covered include key encryption techniques, smart home appliances, fog communication networks, and security in the internet of things. This book is valuable for technologists, data analysts, networking experts, practitioners, researchers, academicians, and students.
Publisher: IGI Global
ISBN: 1799869903
Category : Technology & Engineering
Languages : en
Pages : 227
Book Description
Wireless communication is continuously evolving to improve and be a part of our daily communication. This leads to improved quality of services and applications supported by networking technologies. We are now able to use LTE, LTE-Advanced, and other emerging technologies due to the enormous efforts that are made to improve the quality of service in cellular networks. As the future of networking is uncertain, the use of deep learning and big data analytics is a point of focus as it can work in many capacities at a variety of levels for wireless communications. Implementing Data Analytics and Architectures for Next Generation Wireless Communications addresses the existing and emerging theoretical and practical challenges in the design, development, and implementation of big data algorithms, protocols, architectures, and applications for next generation wireless communications and their applications in smart cities. The chapters of this book bring together academics and industrial practitioners to exchange, discuss, and implement the latest innovations and applications of data analytics in advanced networks. Specific topics covered include key encryption techniques, smart home appliances, fog communication networks, and security in the internet of things. This book is valuable for technologists, data analysts, networking experts, practitioners, researchers, academicians, and students.
Internet of Things and Big Data Technologies for Next Generation Healthcare
Author: Chintan Bhatt
Publisher: Springer
ISBN: 3319497367
Category : Technology & Engineering
Languages : en
Pages : 386
Book Description
This comprehensive book focuses on better big-data security for healthcare organizations. Following an extensive introduction to the Internet of Things (IoT) in healthcare including challenging topics and scenarios, it offers an in-depth analysis of medical body area networks with the 5th generation of IoT communication technology along with its nanotechnology. It also describes a novel strategic framework and computationally intelligent model to measure possible security vulnerabilities in the context of e-health. Moreover, the book addresses healthcare systems that handle large volumes of data driven by patients’ records and health/personal information, including big-data-based knowledge management systems to support clinical decisions. Several of the issues faced in storing/processing big data are presented along with the available tools, technologies and algorithms to deal with those problems as well as a case study in healthcare analytics. Addressing trust, privacy, and security issues as well as the IoT and big-data challenges, the book highlights the advances in the field to guide engineers developing different IoT devices and evaluating the performance of different IoT techniques. Additionally, it explores the impact of such technologies on public, private, community, and hybrid scenarios in healthcare. This book offers professionals, scientists and engineers the latest technologies, techniques, and strategies for IoT and big data.
Publisher: Springer
ISBN: 3319497367
Category : Technology & Engineering
Languages : en
Pages : 386
Book Description
This comprehensive book focuses on better big-data security for healthcare organizations. Following an extensive introduction to the Internet of Things (IoT) in healthcare including challenging topics and scenarios, it offers an in-depth analysis of medical body area networks with the 5th generation of IoT communication technology along with its nanotechnology. It also describes a novel strategic framework and computationally intelligent model to measure possible security vulnerabilities in the context of e-health. Moreover, the book addresses healthcare systems that handle large volumes of data driven by patients’ records and health/personal information, including big-data-based knowledge management systems to support clinical decisions. Several of the issues faced in storing/processing big data are presented along with the available tools, technologies and algorithms to deal with those problems as well as a case study in healthcare analytics. Addressing trust, privacy, and security issues as well as the IoT and big-data challenges, the book highlights the advances in the field to guide engineers developing different IoT devices and evaluating the performance of different IoT techniques. Additionally, it explores the impact of such technologies on public, private, community, and hybrid scenarios in healthcare. This book offers professionals, scientists and engineers the latest technologies, techniques, and strategies for IoT and big data.
Internet of Things and Big Data Analytics Toward Next-Generation Intelligence
Author: Nilanjan Dey
Publisher: Springer
ISBN: 331960435X
Category : Technology & Engineering
Languages : en
Pages : 545
Book Description
This book highlights state-of-the-art research on big data and the Internet of Things (IoT), along with related areas to ensure efficient and Internet-compatible IoT systems. It not only discusses big data security and privacy challenges, but also energy-efficient approaches to improving virtual machine placement in cloud computing environments. Big data and the Internet of Things (IoT) are ultimately two sides of the same coin, yet extracting, analyzing and managing IoT data poses a serious challenge. Accordingly, proper analytics infrastructures/platforms should be used to analyze IoT data. Information technology (IT) allows people to upload, retrieve, store and collect information, which ultimately forms big data. The use of big data analytics has grown tremendously in just the past few years. At the same time, the IoT has entered the public consciousness, sparking people’s imaginations as to what a fully connected world can offer. Further, the book discusses the analysis of real-time big data to derive actionable intelligence in enterprise applications in several domains, such as in industry and agriculture. It explores possible automated solutions in daily life, including structures for smart cities and automated home systems based on IoT technology, as well as health care systems that manage large amounts of data (big data) to improve clinical decisions. The book addresses the security and privacy of the IoT and big data technologies, while also revealing the impact of IoT technologies on several scenarios in smart cities design. Intended as a comprehensive introduction, it offers in-depth analysis and provides scientists, engineers and professionals the latest techniques, frameworks and strategies used in IoT and big data technologies.
Publisher: Springer
ISBN: 331960435X
Category : Technology & Engineering
Languages : en
Pages : 545
Book Description
This book highlights state-of-the-art research on big data and the Internet of Things (IoT), along with related areas to ensure efficient and Internet-compatible IoT systems. It not only discusses big data security and privacy challenges, but also energy-efficient approaches to improving virtual machine placement in cloud computing environments. Big data and the Internet of Things (IoT) are ultimately two sides of the same coin, yet extracting, analyzing and managing IoT data poses a serious challenge. Accordingly, proper analytics infrastructures/platforms should be used to analyze IoT data. Information technology (IT) allows people to upload, retrieve, store and collect information, which ultimately forms big data. The use of big data analytics has grown tremendously in just the past few years. At the same time, the IoT has entered the public consciousness, sparking people’s imaginations as to what a fully connected world can offer. Further, the book discusses the analysis of real-time big data to derive actionable intelligence in enterprise applications in several domains, such as in industry and agriculture. It explores possible automated solutions in daily life, including structures for smart cities and automated home systems based on IoT technology, as well as health care systems that manage large amounts of data (big data) to improve clinical decisions. The book addresses the security and privacy of the IoT and big data technologies, while also revealing the impact of IoT technologies on several scenarios in smart cities design. Intended as a comprehensive introduction, it offers in-depth analysis and provides scientists, engineers and professionals the latest techniques, frameworks and strategies used in IoT and big data technologies.
Big Data
Author: Rajkumar Buyya
Publisher: Morgan Kaufmann
ISBN: 0128093463
Category : Computers
Languages : en
Pages : 496
Book Description
Big Data: Principles and Paradigms captures the state-of-the-art research on the architectural aspects, technologies, and applications of Big Data. The book identifies potential future directions and technologies that facilitate insight into numerous scientific, business, and consumer applications. To help realize Big Data's full potential, the book addresses numerous challenges, offering the conceptual and technological solutions for tackling them. These challenges include life-cycle data management, large-scale storage, flexible processing infrastructure, data modeling, scalable machine learning, data analysis algorithms, sampling techniques, and privacy and ethical issues. - Covers computational platforms supporting Big Data applications - Addresses key principles underlying Big Data computing - Examines key developments supporting next generation Big Data platforms - Explores the challenges in Big Data computing and ways to overcome them - Contains expert contributors from both academia and industry
Publisher: Morgan Kaufmann
ISBN: 0128093463
Category : Computers
Languages : en
Pages : 496
Book Description
Big Data: Principles and Paradigms captures the state-of-the-art research on the architectural aspects, technologies, and applications of Big Data. The book identifies potential future directions and technologies that facilitate insight into numerous scientific, business, and consumer applications. To help realize Big Data's full potential, the book addresses numerous challenges, offering the conceptual and technological solutions for tackling them. These challenges include life-cycle data management, large-scale storage, flexible processing infrastructure, data modeling, scalable machine learning, data analysis algorithms, sampling techniques, and privacy and ethical issues. - Covers computational platforms supporting Big Data applications - Addresses key principles underlying Big Data computing - Examines key developments supporting next generation Big Data platforms - Explores the challenges in Big Data computing and ways to overcome them - Contains expert contributors from both academia and industry
Street Data
Author: Shane Safir
Publisher: Corwin
ISBN: 1071812661
Category : Education
Languages : en
Pages : 281
Book Description
Radically reimagine our ways of being, learning, and doing Education can be transformed if we eradicate our fixation on big data like standardized test scores as the supreme measure of equity and learning. Instead of the focus being on "fixing" and "filling" academic gaps, we must envision and rebuild the system from the student up—with classrooms, schools and systems built around students’ brilliance, cultural wealth, and intellectual potential. Street data reminds us that what is measurable is not the same as what is valuable and that data can be humanizing, liberatory and healing. By breaking down street data fundamentals: what it is, how to gather it, and how it can complement other forms of data to guide a school or district’s equity journey, Safir and Dugan offer an actionable framework for school transformation. Written for educators and policymakers, this book · Offers fresh ideas and innovative tools to apply immediately · Provides an asset-based model to help educators look for what’s right in our students and communities instead of seeking what’s wrong · Explores a different application of data, from its capacity to help us diagnose root causes of inequity, to its potential to transform learning, and its power to reshape adult culture Now is the time to take an antiracist stance, interrogate our assumptions about knowledge, measurement, and what really matters when it comes to educating young people.
Publisher: Corwin
ISBN: 1071812661
Category : Education
Languages : en
Pages : 281
Book Description
Radically reimagine our ways of being, learning, and doing Education can be transformed if we eradicate our fixation on big data like standardized test scores as the supreme measure of equity and learning. Instead of the focus being on "fixing" and "filling" academic gaps, we must envision and rebuild the system from the student up—with classrooms, schools and systems built around students’ brilliance, cultural wealth, and intellectual potential. Street data reminds us that what is measurable is not the same as what is valuable and that data can be humanizing, liberatory and healing. By breaking down street data fundamentals: what it is, how to gather it, and how it can complement other forms of data to guide a school or district’s equity journey, Safir and Dugan offer an actionable framework for school transformation. Written for educators and policymakers, this book · Offers fresh ideas and innovative tools to apply immediately · Provides an asset-based model to help educators look for what’s right in our students and communities instead of seeking what’s wrong · Explores a different application of data, from its capacity to help us diagnose root causes of inequity, to its potential to transform learning, and its power to reshape adult culture Now is the time to take an antiracist stance, interrogate our assumptions about knowledge, measurement, and what really matters when it comes to educating young people.
Data Warehousing in the Age of Big Data
Author: Krish Krishnan
Publisher: Newnes
ISBN: 0124059201
Category : Computers
Languages : en
Pages : 371
Book Description
Data Warehousing in the Age of the Big Data will help you and your organization make the most of unstructured data with your existing data warehouse. As Big Data continues to revolutionize how we use data, it doesn't have to create more confusion. Expert author Krish Krishnan helps you make sense of how Big Data fits into the world of data warehousing in clear and concise detail. The book is presented in three distinct parts. Part 1 discusses Big Data, its technologies and use cases from early adopters. Part 2 addresses data warehousing, its shortcomings, and new architecture options, workloads, and integration techniques for Big Data and the data warehouse. Part 3 deals with data governance, data visualization, information life-cycle management, data scientists, and implementing a Big Data–ready data warehouse. Extensive appendixes include case studies from vendor implementations and a special segment on how we can build a healthcare information factory. Ultimately, this book will help you navigate through the complex layers of Big Data and data warehousing while providing you information on how to effectively think about using all these technologies and the architectures to design the next-generation data warehouse. - Learn how to leverage Big Data by effectively integrating it into your data warehouse. - Includes real-world examples and use cases that clearly demonstrate Hadoop, NoSQL, HBASE, Hive, and other Big Data technologies - Understand how to optimize and tune your current data warehouse infrastructure and integrate newer infrastructure matching data processing workloads and requirements
Publisher: Newnes
ISBN: 0124059201
Category : Computers
Languages : en
Pages : 371
Book Description
Data Warehousing in the Age of the Big Data will help you and your organization make the most of unstructured data with your existing data warehouse. As Big Data continues to revolutionize how we use data, it doesn't have to create more confusion. Expert author Krish Krishnan helps you make sense of how Big Data fits into the world of data warehousing in clear and concise detail. The book is presented in three distinct parts. Part 1 discusses Big Data, its technologies and use cases from early adopters. Part 2 addresses data warehousing, its shortcomings, and new architecture options, workloads, and integration techniques for Big Data and the data warehouse. Part 3 deals with data governance, data visualization, information life-cycle management, data scientists, and implementing a Big Data–ready data warehouse. Extensive appendixes include case studies from vendor implementations and a special segment on how we can build a healthcare information factory. Ultimately, this book will help you navigate through the complex layers of Big Data and data warehousing while providing you information on how to effectively think about using all these technologies and the architectures to design the next-generation data warehouse. - Learn how to leverage Big Data by effectively integrating it into your data warehouse. - Includes real-world examples and use cases that clearly demonstrate Hadoop, NoSQL, HBASE, Hive, and other Big Data technologies - Understand how to optimize and tune your current data warehouse infrastructure and integrate newer infrastructure matching data processing workloads and requirements