Newton's Method Applied to Two Quadratic Equations in C2 Viewed as a Global Dynamical System

Newton's Method Applied to Two Quadratic Equations in C2 Viewed as a Global Dynamical System PDF Author: John Hamal Hubbard
Publisher:
ISBN: 9781470404970
Category : Differentiable dynamical systems
Languages : en
Pages : 160

Get Book Here

Book Description
Studies the Newton map $N: \mathbb{C} DEGREES2\rightarrow\mathbb{C} DEGREES2$ associated to two equations in two unknowns, as a dynamical system. This title focuses on the first non-trivial case: two simultaneous quadratics, to intersect two conics. It proves among other things: the Russakovksi-Shiffman measure does not change the points of

Newton's Method Applied to Two Quadratic Equations in C2 Viewed as a Global Dynamical System

Newton's Method Applied to Two Quadratic Equations in C2 Viewed as a Global Dynamical System PDF Author: John Hamal Hubbard
Publisher:
ISBN: 9781470404970
Category : Differentiable dynamical systems
Languages : en
Pages : 160

Get Book Here

Book Description
Studies the Newton map $N: \mathbb{C} DEGREES2\rightarrow\mathbb{C} DEGREES2$ associated to two equations in two unknowns, as a dynamical system. This title focuses on the first non-trivial case: two simultaneous quadratics, to intersect two conics. It proves among other things: the Russakovksi-Shiffman measure does not change the points of

Newton's Method Applied to Two Quadratic Equations in $\mathbb {C}^2$ Viewed as a Global Dynamical System

Newton's Method Applied to Two Quadratic Equations in $\mathbb {C}^2$ Viewed as a Global Dynamical System PDF Author: John H. Hubbard
Publisher: American Mathematical Soc.
ISBN: 0821840568
Category : Mathematics
Languages : en
Pages : 160

Get Book Here

Book Description
The authors study the Newton map $N:\mathbb{C}^2\rightarrow\mathbb{C}^2$ associated to two equations in two unknowns, as a dynamical system. They focus on the first non-trivial case: two simultaneous quadratics, to intersect two conics. In the first two chapters, the authors prove among other things: The Russakovksi-Shiffman measure does not change the points of indeterminancy. The lines joining pairs of roots are invariant, and the Julia set of the restriction of $N$ to such a line has under appropriate circumstances an invariant manifold, which shares features of a stable manifold and a center manifold. The main part of the article concerns the behavior of $N$ at infinity. To compactify $\mathbb{C}^2$ in such a way that $N$ extends to the compactification, the authors must take the projective limit of an infinite sequence of blow-ups. The simultaneous presence of points of indeterminancy and of critical curves forces the authors to define a new kind of blow-up: the Farey blow-up. This construction is studied in its own right in chapter 4, where they show among others that the real oriented blow-up of the Farey blow-up has a topological structure reminiscent of the invariant tori of the KAM theorem. They also show that the cohomology, completed under the intersection inner product, is naturally isomorphic to the classical Sobolev space of functions with square-integrable derivatives. In chapter 5 the authors apply these results to the mapping $N$ in a particular case, which they generalize in chapter 6 to the intersection of any two conics.

Newton's Method Applied to Two Quadratic Equations in C2 Viewed as a Global Dynamical System

Newton's Method Applied to Two Quadratic Equations in C2 Viewed as a Global Dynamical System PDF Author: John H. Hubbard
Publisher: American Mathematical Soc.
ISBN: 9780821866320
Category : Mathematics
Languages : en
Pages : 162

Get Book Here

Book Description
Introduction Fundamental properties of Newton maps Invariant 3-manifolds associated to invariant circles The behavior at infinity when $a=b=0$ The Farey blow-up The compactification when $a=b=0$ The case where $a$ and $b$ are arbitrary Bibliography

Introductory Combinatorics

Introductory Combinatorics PDF Author: Kenneth P. Bogart
Publisher: Harcourt Brace College Publishers
ISBN:
Category : Computers
Languages : en
Pages : 648

Get Book Here

Book Description
Introductory, Combinatorics, Third Edition is designed for introductory courses in combinatorics, or more generally, discrete mathematics. The author, Kenneth Bogart, has chosen core material of value to students in a wide variety of disciplines: mathematics, computer science, statistics, operations research, physical sciences, and behavioral sciences. The rapid growth in the breadth and depth of the field of combinatorics in the last several decades, first in graph theory and designs and more recently in enumeration and ordered sets, has led to a recognition of combinatorics as a field with which the aspiring mathematician should become familiar. This long-overdue new edition of a popular set presents a broad comprehensive survey of modern combinatorics which is important to the various scientific fields of study.

Flavors of Geometry

Flavors of Geometry PDF Author: Silvio Levy
Publisher: Cambridge University Press
ISBN: 9780521629621
Category : Mathematics
Languages : en
Pages : 212

Get Book Here

Book Description
Flavors of Geometry is a volume of lectures on four geometrically-influenced fields of mathematics that have experienced great development in recent years. Growing out of a series of introductory lectures given at the Mathematical Sciences Research Institute in January 1995 and January 1996, the book presents chapters by masters in their respective fields on hyperbolic geometry, dynamics in several complex variables, convex geometry, and volume estimation. Each lecture begins with a discussion of elementary concepts, examines the highlights of the field, and concludes with a look at more advanced material. The style and presentation of the chapters are clear and accessible, and most of the lectures are richly illustrated. Bibiliographies and indexes are included to encourage further reading on the topics discussed.

Measure Theory and Fine Properties of Functions, Revised Edition

Measure Theory and Fine Properties of Functions, Revised Edition PDF Author: Lawrence Craig Evans
Publisher: CRC Press
ISBN: 1482242397
Category : Mathematics
Languages : en
Pages : 313

Get Book Here

Book Description
Measure Theory and Fine Properties of Functions, Revised Edition provides a detailed examination of the central assertions of measure theory in n-dimensional Euclidean space. The book emphasizes the roles of Hausdorff measure and capacity in characterizing the fine properties of sets and functions. Topics covered include a quick review of abstract

Integrability, Supersymmetry and Coherent States

Integrability, Supersymmetry and Coherent States PDF Author: Şengül Kuru
Publisher: Springer
ISBN: 3030200876
Category : Science
Languages : en
Pages : 434

Get Book Here

Book Description
This volume shares and makes accessible new research lines and recent results in several branches of theoretical and mathematical physics, among them Quantum Optics, Coherent States, Integrable Systems, SUSY Quantum Mechanics, and Mathematical Methods in Physics. In addition to a selection of the contributions presented at the "6th International Workshop on New Challenges in Quantum Mechanics: Integrability and Supersymmetry", held in Valladolid, Spain, 27-30 June 2017, several high quality contributions from other authors are also included. The conference gathered 60 participants from many countries working in different fields of Theoretical Physics, and was dedicated to Prof. Véronique Hussin—an internationally recognized expert in many branches of Mathematical Physics who has been making remarkable contributions to this field since the 1980s. The reader will find interesting reviews on the main topics from internationally recognized experts in each field, as well as other original contributions, all of which deal with recent applications or discoveries in the aforementioned areas.

Adaptive Dynamic Programming with Applications in Optimal Control

Adaptive Dynamic Programming with Applications in Optimal Control PDF Author: Derong Liu
Publisher: Springer
ISBN: 3319508156
Category : Technology & Engineering
Languages : en
Pages : 609

Get Book Here

Book Description
This book covers the most recent developments in adaptive dynamic programming (ADP). The text begins with a thorough background review of ADP making sure that readers are sufficiently familiar with the fundamentals. In the core of the book, the authors address first discrete- and then continuous-time systems. Coverage of discrete-time systems starts with a more general form of value iteration to demonstrate its convergence, optimality, and stability with complete and thorough theoretical analysis. A more realistic form of value iteration is studied where value function approximations are assumed to have finite errors. Adaptive Dynamic Programming also details another avenue of the ADP approach: policy iteration. Both basic and generalized forms of policy-iteration-based ADP are studied with complete and thorough theoretical analysis in terms of convergence, optimality, stability, and error bounds. Among continuous-time systems, the control of affine and nonaffine nonlinear systems is studied using the ADP approach which is then extended to other branches of control theory including decentralized control, robust and guaranteed cost control, and game theory. In the last part of the book the real-world significance of ADP theory is presented, focusing on three application examples developed from the authors’ work: • renewable energy scheduling for smart power grids;• coal gasification processes; and• water–gas shift reactions. Researchers studying intelligent control methods and practitioners looking to apply them in the chemical-process and power-supply industries will find much to interest them in this thorough treatment of an advanced approach to control.

Fluid-Structure Interaction

Fluid-Structure Interaction PDF Author: Stefan Frei
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110494256
Category : Mathematics
Languages : en
Pages : 386

Get Book Here

Book Description
This monograph discusses modeling, adaptive discretisation techniques and the numerical solution of fluid structure interaction. An emphasis in part I lies on innovative discretisation and advanced interface resolution techniques. The second part covers the efficient and robust numerical solution of fluid-structure interaction. In part III, recent advances in the application fields vascular flows, binary-fluid-solid interaction, and coupling to fractures in the solid part are presented. Moreover each chapter provides a comprehensive overview in the respective topics including many references to concurring state-of-the art work. Contents Part I: Modeling and discretization On the implementation and benchmarking of an extended ALE method for FSI problems The locally adapted parametric finite element method for interface problems on triangular meshes An accurate Eulerian approach for fluid-structure interactions Part II: Solvers Numerical methods for unsteady thermal fluid structure interaction Recent development of robust monolithic fluid-structure interaction solvers A monolithic FSI solver applied to the FSI 1,2,3 benchmarks Part III: Applications Fluid-structure interaction for vascular flows: From supercomputers to laptops Binary-fluid–solid interaction based on the Navier–Stokes–Cahn–Hilliard Equations Coupling fluid-structure interaction with phase-field fracture: Algorithmic details

Quantitative Remote Sensing of Land Surfaces

Quantitative Remote Sensing of Land Surfaces PDF Author: Shunlin Liang
Publisher: John Wiley & Sons
ISBN: 0471723711
Category : Technology & Engineering
Languages : en
Pages : 562

Get Book Here

Book Description
Processing the vast amounts of data on the Earth's land surface environment generated by NASA's and other international satellite programs is a significant challenge. Filling a gap between the theoretical, physically-based modelling and specific applications, this in-depth study presents practical quantitative algorithms for estimating various land surface variables from remotely sensed observations. A concise review of the basic principles of optical remote sensing as well as practical algorithms for estimating land surface variables quantitatively from remotely sensed observations. Emphasizes both the basic principles of optical remote sensing and practical algorithms for estimating land surface variables quantitatively from remotely sensed observations Presents the current physical understanding of remote sensing as a system with a focus on radiative transfer modelling of the atmosphere, canopy, soil and snow Gathers the state of the art quantitative algorithms for sensor calibration, atmospheric and topographic correction, estimation of a variety of biophysical and geoph ysical variables, and four-dimensional data assimilation