New Fundamental Technologies in Data Mining

New Fundamental Technologies in Data Mining PDF Author: Kimito Funatsu
Publisher: BoD – Books on Demand
ISBN: 9533075473
Category : Computers
Languages : en
Pages : 600

Get Book Here

Book Description
The progress of data mining technology and large public popularity establish a need for a comprehensive text on the subject. The series of books entitled by "Data Mining" address the need by presenting in-depth description of novel mining algorithms and many useful applications. In addition to understanding each section deeply, the two books present useful hints and strategies to solving problems in the following chapters. The contributing authors have highlighted many future research directions that will foster multi-disciplinary collaborations and hence will lead to significant development in the field of data mining.

New Fundamental Technologies in Data Mining

New Fundamental Technologies in Data Mining PDF Author: Kimito Funatsu
Publisher: BoD – Books on Demand
ISBN: 9533075473
Category : Computers
Languages : en
Pages : 600

Get Book Here

Book Description
The progress of data mining technology and large public popularity establish a need for a comprehensive text on the subject. The series of books entitled by "Data Mining" address the need by presenting in-depth description of novel mining algorithms and many useful applications. In addition to understanding each section deeply, the two books present useful hints and strategies to solving problems in the following chapters. The contributing authors have highlighted many future research directions that will foster multi-disciplinary collaborations and hence will lead to significant development in the field of data mining.

Fundamentals of Data Mining in Genomics and Proteomics

Fundamentals of Data Mining in Genomics and Proteomics PDF Author: Werner Dubitzky
Publisher: Springer Science & Business Media
ISBN: 0387475095
Category : Science
Languages : en
Pages : 300

Get Book Here

Book Description
This book presents state-of-the-art analytical methods from statistics and data mining for the analysis of high-throughput data from genomics and proteomics. It adopts an approach focusing on concepts and applications and presents key analytical techniques for the analysis of genomics and proteomics data by detailing their underlying principles, merits and limitations.

Data Mining

Data Mining PDF Author: Ian H. Witten
Publisher: Elsevier
ISBN: 0080890369
Category : Computers
Languages : en
Pages : 665

Get Book Here

Book Description
Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. The book is targeted at information systems practitioners, programmers, consultants, developers, information technology managers, specification writers, data analysts, data modelers, database R&D professionals, data warehouse engineers, data mining professionals. The book will also be useful for professors and students of upper-level undergraduate and graduate-level data mining and machine learning courses who want to incorporate data mining as part of their data management knowledge base and expertise. - Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects - Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods - Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks—in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization

Introduction to Algorithms for Data Mining and Machine Learning

Introduction to Algorithms for Data Mining and Machine Learning PDF Author: Xin-She Yang
Publisher: Academic Press
ISBN: 0128172177
Category : Mathematics
Languages : en
Pages : 190

Get Book Here

Book Description
Introduction to Algorithms for Data Mining and Machine Learning introduces the essential ideas behind all key algorithms and techniques for data mining and machine learning, along with optimization techniques. Its strong formal mathematical approach, well selected examples, and practical software recommendations help readers develop confidence in their data modeling skills so they can process and interpret data for classification, clustering, curve-fitting and predictions. Masterfully balancing theory and practice, it is especially useful for those who need relevant, well explained, but not rigorous (proofs based) background theory and clear guidelines for working with big data. Presents an informal, theorem-free approach with concise, compact coverage of all fundamental topics Includes worked examples that help users increase confidence in their understanding of key algorithms, thus encouraging self-study Provides algorithms and techniques that can be implemented in any programming language, with each chapter including notes about relevant software packages

Parallel Computing Technologies

Parallel Computing Technologies PDF Author: Victor Malyshkin
Publisher: Springer
ISBN: 331921909X
Category : Computers
Languages : en
Pages : 552

Get Book Here

Book Description
This book constitutes the proceedings of the 13th International Conference on Parallel Computing Technologies, PaCT 2015, held in Petrozavodsk, Russia, during August / September 2015. The 37 full papers and 14 short papers presented were carefully reviewed and selected from 87 submissions. The papers are organized in topical sections on parallel models, algorithms and programming methods; unconventional computing; cellular automata; distributed computing; special processors programming techniques; applications.

Principles of Data Mining

Principles of Data Mining PDF Author: David J. Hand
Publisher: MIT Press
ISBN: 9780262082907
Category : Computers
Languages : en
Pages : 594

Get Book Here

Book Description
The first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The growing interest in data mining is motivated by a common problem across disciplines: how does one store, access, model, and ultimately describe and understand very large data sets? Historically, different aspects of data mining have been addressed independently by different disciplines. This is the first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The book consists of three sections. The first, foundations, provides a tutorial overview of the principles underlying data mining algorithms and their application. The presentation emphasizes intuition rather than rigor. The second section, data mining algorithms, shows how algorithms are constructed to solve specific problems in a principled manner. The algorithms covered include trees and rules for classification and regression, association rules, belief networks, classical statistical models, nonlinear models such as neural networks, and local "memory-based" models. The third section shows how all of the preceding analysis fits together when applied to real-world data mining problems. Topics include the role of metadata, how to handle missing data, and data preprocessing.

Data Mining: Concepts and Techniques

Data Mining: Concepts and Techniques PDF Author: Jiawei Han
Publisher: Elsevier
ISBN: 0123814804
Category : Computers
Languages : en
Pages : 740

Get Book Here

Book Description
Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data

Knowledge-Oriented Applications in Data Mining

Knowledge-Oriented Applications in Data Mining PDF Author: Kimito Funatsu
Publisher: BoD – Books on Demand
ISBN: 9533071540
Category : Computers
Languages : en
Pages : 458

Get Book Here

Book Description
The progress of data mining technology and large public popularity establish a need for a comprehensive text on the subject. The series of books entitled by 'Data Mining' address the need by presenting in-depth description of novel mining algorithms and many useful applications. In addition to understanding each section deeply, the two books present useful hints and strategies to solving problems in the following chapters. The contributing authors have highlighted many future research directions that will foster multi-disciplinary collaborations and hence will lead to significant development in the field of data mining.

Redesigning Higher Education Initiatives for Industry 4.0

Redesigning Higher Education Initiatives for Industry 4.0 PDF Author: Raman, Arumugam
Publisher: IGI Global
ISBN: 1522578331
Category : Education
Languages : en
Pages : 414

Get Book Here

Book Description
The Fourth Industrial Revolution is introducing automation technology into all major disciplines, including business, engineering, and education. Higher education institutions need to incorporate this digital transformation in order to remain competitive. Redesigning Higher Education Initiatives for Industry 4.0 is an essential reference source that discusses education strategies for human-computer interactions in an automated world and the role of education in conjunction with artificial intelligence and virtual technologies. Featuring research on topics such as e-learning, mobile devices, and artificial intelligence, this book is ideally designed for professionals, IT specialists, researchers, librarians, administrators, and educators.

Fundamentals of Image Data Mining

Fundamentals of Image Data Mining PDF Author: Dengsheng Zhang
Publisher: Springer Nature
ISBN: 3030692515
Category : Computers
Languages : en
Pages : 383

Get Book Here

Book Description
This unique and useful textbook presents a comprehensive review of the essentials of image data mining, and the latest cutting-edge techniques used in the field. The coverage spans all aspects of image analysis and understanding, offering deep insights into areas of feature extraction, machine learning, and image retrieval. The theoretical coverage is supported by practical mathematical models and algorithms, utilizing data from real-world examples and experiments. Topics and features: Describes essential tools for image mining, covering Fourier transforms, Gabor filters, and contemporary wavelet transforms Develops many new exercises (most with MATLAB code and instructions) Includes review summaries at the end of each chapter Analyses state-of-the-art models, algorithms, and procedures for image mining Integrates new sections on pre-processing, discrete cosine transform, and statistical inference and testing Demonstrates how features like color, texture, and shape can be mined or extracted for image representation Applies powerful classification approaches: Bayesian classification, support vector machines, neural networks, and decision trees Implements imaging techniques for indexing, ranking, and presentation, as well as database visualization This easy-to-follow, award-winning book illuminates how concepts from fundamental and advanced mathematics can be applied to solve a broad range of image data mining problems encountered by students and researchers of computer science. Students of mathematics and other scientific disciplines will also benefit from the applications and solutions described in the text, together with the hands-on exercises that enable the reader to gain first-hand experience of computing.