New Challenges for Data Design

New Challenges for Data Design PDF Author: David Bihanic
Publisher: Springer
ISBN: 1447165969
Category : Technology & Engineering
Languages : en
Pages : 441

Get Book Here

Book Description
The present work provides a platform for leading Data designers whose vision and creativity help us to anticipate major changes occurring in the Data Design field, and pre-empt the future. Each of them strives to provide new answers to the question, “What challenges await Data Design?” To avoid falling into too narrow a mind-set, each works hard to elucidate the breadth of Data Design today and to demonstrate its widespread application across a variety of business sectors. With end users in mind, designer-contributors bring to light the myriad of purposes for which the field was originally intended, forging the bond even further between Data Design and the aims and intentions of those who contribute to it. The first seven parts of the book outline the scope of Data Design, and presents a line-up of “viewpoints” that highlight this discipline’s main topics, and offers an in-depth look into practices boasting both foresight and imagination. The eighth and final part features a series of interviews with Data designers and artists whose methods embody originality and marked singularity. As a result, a number of enlightening concepts and bright ideas unfold within the confines of this book to help dispel the thick fog around this new and still relatively unknown discipline. A plethora of equally eye-opening and edifying new terms, words, and key expressions also unfurl. Informing, influencing, and inspiring are just a few of the buzz words belonging to an initiative that is, first and foremost, a creative one, not to mention the possibility to discern the ever-changing and naturally complex nature of today’s datasphere. Providing an invaluable and cutting-edge resource for design researchers, this work is also intended for students, professionals and practitioners involved in Data Design, Interaction Design, Digital & Media Design, Data & Information Visualization, Computer Science and Engineering.

New Challenges for Data Design

New Challenges for Data Design PDF Author: David Bihanic
Publisher: Springer
ISBN: 1447165969
Category : Technology & Engineering
Languages : en
Pages : 441

Get Book Here

Book Description
The present work provides a platform for leading Data designers whose vision and creativity help us to anticipate major changes occurring in the Data Design field, and pre-empt the future. Each of them strives to provide new answers to the question, “What challenges await Data Design?” To avoid falling into too narrow a mind-set, each works hard to elucidate the breadth of Data Design today and to demonstrate its widespread application across a variety of business sectors. With end users in mind, designer-contributors bring to light the myriad of purposes for which the field was originally intended, forging the bond even further between Data Design and the aims and intentions of those who contribute to it. The first seven parts of the book outline the scope of Data Design, and presents a line-up of “viewpoints” that highlight this discipline’s main topics, and offers an in-depth look into practices boasting both foresight and imagination. The eighth and final part features a series of interviews with Data designers and artists whose methods embody originality and marked singularity. As a result, a number of enlightening concepts and bright ideas unfold within the confines of this book to help dispel the thick fog around this new and still relatively unknown discipline. A plethora of equally eye-opening and edifying new terms, words, and key expressions also unfurl. Informing, influencing, and inspiring are just a few of the buzz words belonging to an initiative that is, first and foremost, a creative one, not to mention the possibility to discern the ever-changing and naturally complex nature of today’s datasphere. Providing an invaluable and cutting-edge resource for design researchers, this work is also intended for students, professionals and practitioners involved in Data Design, Interaction Design, Digital & Media Design, Data & Information Visualization, Computer Science and Engineering.

Group Privacy

Group Privacy PDF Author: Linnet Taylor
Publisher: Springer
ISBN: 3319466089
Category : Philosophy
Languages : en
Pages : 249

Get Book Here

Book Description
The goal of the book is to present the latest research on the new challenges of data technologies. It will offer an overview of the social, ethical and legal problems posed by group profiling, big data and predictive analysis and of the different approaches and methods that can be used to address them. In doing so, it will help the reader to gain a better grasp of the ethical and legal conundrums posed by group profiling. The volume first maps the current and emerging uses of new data technologies and clarifies the promises and dangers of group profiling in real life situations. It then balances this with an analysis of how far the current legal paradigm grants group rights to privacy and data protection, and discusses possible routes to addressing these problems. Finally, an afterword gathers the conclusions reached by the different authors and discuss future perspectives on regulating new data technologies.

Data-Oriented Programming

Data-Oriented Programming PDF Author: Yehonathan Sharvit
Publisher: Simon and Schuster
ISBN: 1617298573
Category : Computers
Languages : en
Pages : 422

Get Book Here

Book Description
Eliminate the unavoidable complexity of object-oriented designs. The innovative data-oriented programming paradigm makes your systems less complex by making it simpler to access and manipulate data. In Data-Oriented Programming you will learn how to: Separate code from data Represent data with generic data structures Manipulate data with general-purpose functions Manage state without mutating data Control concurrency in highly scalable systems Write data-oriented unit tests Specify the shape of your data Benefit from polymorphism without objects Debug programs without a debugger Data-Oriented Programming is a one-of-a-kind guide that introduces the data-oriented paradigm. This groundbreaking approach represents data with generic immutable data structures. It simplifies state management, eases concurrency, and does away with the common problems you’ll find in object-oriented code. The book presents powerful new ideas through conversations, code snippets, and diagrams that help you quickly grok what’s great about DOP. Best of all, the paradigm is language-agnostic—you’ll learn to write DOP code that can be implemented in JavaScript, Ruby, Python, Clojure, and also in traditional OO languages like Java or C#. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Code that combines behavior and data, as is common in object-oriented designs, can introduce almost unmanageable complexity for state management. The Data-oriented programming (DOP) paradigm simplifies state management by holding application data in immutable generic data structures and then performing calculations using non-mutating general-purpose functions. Your applications are free of state-related bugs and your code is easier to understand and maintain. About the book Data-Oriented Programming teaches you to design software using the groundbreaking data-oriented paradigm. You’ll put DOP into action to design data models for business entities and implement a library management system that manages state without data mutation. The numerous diagrams, intuitive mind maps, and a unique conversational approach all help you get your head around these exciting new ideas. Every chapter has a lightbulb moment that will change the way you think about programming. What's inside Separate code from data Represent data with generic data structures Manage state without mutating data Control concurrency in highly scalable systems Write data-oriented unit tests Specify the shape of your data About the reader For programmers who have experience with a high-level programming language like JavaScript, Java, Python, C#, Clojure, or Ruby. About the author Yehonathan Sharvit has over twenty years of experience as a software engineer. He blogs, speaks at conferences, and leads Data-Oriented Programming workshops around the world. Table of Contents PART 1 FLEXIBILITY 1 Complexity of object-oriented programming 2 Separation between code and data 3 Basic data manipulation 4 State management 5 Basic concurrency control 6 Unit tests PART 2 SCALABILITY 7 Basic data validation 8 Advanced concurrency control 9 Persistent data structures 10 Database operations 11 Web services PART 3 MAINTAINABILITY 12 Advanced data validation 13 Polymorphism 14 Advanced data manipulation 15 Debugging

Designing Data-Intensive Applications

Designing Data-Intensive Applications PDF Author: Martin Kleppmann
Publisher: "O'Reilly Media, Inc."
ISBN: 1491903104
Category : Computers
Languages : en
Pages : 658

Get Book Here

Book Description
Data is at the center of many challenges in system design today. Difficult issues need to be figured out, such as scalability, consistency, reliability, efficiency, and maintainability. In addition, we have an overwhelming variety of tools, including relational databases, NoSQL datastores, stream or batch processors, and message brokers. What are the right choices for your application? How do you make sense of all these buzzwords? In this practical and comprehensive guide, author Martin Kleppmann helps you navigate this diverse landscape by examining the pros and cons of various technologies for processing and storing data. Software keeps changing, but the fundamental principles remain the same. With this book, software engineers and architects will learn how to apply those ideas in practice, and how to make full use of data in modern applications. Peer under the hood of the systems you already use, and learn how to use and operate them more effectively Make informed decisions by identifying the strengths and weaknesses of different tools Navigate the trade-offs around consistency, scalability, fault tolerance, and complexity Understand the distributed systems research upon which modern databases are built Peek behind the scenes of major online services, and learn from their architectures

Debates in the Digital Humanities 2016

Debates in the Digital Humanities 2016 PDF Author: Matthew K. Gold
Publisher: U of Minnesota Press
ISBN: 1452951497
Category : Education
Languages : en
Pages : 812

Get Book Here

Book Description
Pairing full-length scholarly essays with shorter pieces drawn from scholarly blogs and conference presentations, as well as commissioned interviews and position statements, Debates in the Digital Humanities 2016 reveals a dynamic view of a field in negotiation with its identity, methods, and reach. Pieces in the book explore how DH can and must change in response to social justice movements and events like #Ferguson; how DH alters and is altered by community college classrooms; and how scholars applying DH approaches to feminist studies, queer studies, and black studies might reframe the commitments of DH analysts. Numerous contributors examine the movement of interdisciplinary DH work into areas such as history, art history, and archaeology, and a special forum on large-scale text mining brings together position statements on a fast-growing area of DH research. In the multivalent aspects of its arguments, progressing across a range of platforms and environments, Debates in the Digital Humanities 2016 offers a vision of DH as an expanded field—new possibilities, differently structured. Published simultaneously in print, e-book, and interactive webtext formats, each DH annual will be a book-length publication highlighting the particular debates that have shaped the discipline in a given year. By identifying key issues as they unfold, and by providing a hybrid model of open-access publication, these volumes and the Debates in the Digital Humanities series will articulate the present contours of the field and help forge its future. Contributors: Moya Bailey, Northeastern U; Fiona Barnett; Matthew Battles, Harvard U; Jeffrey M. Binder; Zach Blas, U of London; Cameron Blevins, Rutgers U; Sheila A. Brennan, George Mason U; Timothy Burke, Swarthmore College; Rachel Sagner Buurma, Swarthmore College; Micha Cárdenas, U of Washington–Bothell; Wendy Hui Kyong Chun, Brown U; Tanya E. Clement, U of Texas–Austin; Anne Cong-Huyen, Whittier College; Ryan Cordell, Northeastern U; Tressie McMillan Cottom, Virginia Commonwealth U; Amy E. Earhart, Texas A&M U; Domenico Fiormonte, U of Roma Tre; Paul Fyfe, North Carolina State U; Jacob Gaboury, Stony Brook U; Kim Gallon, Purdue U; Alex Gil, Columbia U; Brian Greenspan, Carleton U; Richard Grusin, U of Wisconsin, Milwaukee; Michael Hancher, U of Minnesota; Molly O’Hagan Hardy; David L. Hoover, New York U; Wendy F. Hsu; Patrick Jagoda, U of Chicago; Jessica Marie Johnson, Michigan State U; Steven E. Jones, Loyola U; Margaret Linley, Simon Fraser U; Alan Liu, U of California, Santa Barbara; Elizabeth Losh, U of California, San Diego; Alexis Lothian, U of Maryland; Michael Maizels, Wellesley College; Mark C. Marino, U of Southern California; Anne B. McGrail, Lane Community College; Bethany Nowviskie, U of Virginia; Julianne Nyhan, U College London; Amanda Phillips, U of California, Davis; Miriam Posner, U of California, Los Angeles; Rita Raley, U of California, Santa Barbara; Stephen Ramsay, U of Nebraska–Lincoln; Margaret Rhee, U of Oregon; Lisa Marie Rhody, Graduate Center, CUNY; Roopika Risam, Salem State U; Stephen Robertson, George Mason U; Mark Sample, Davidson College; Jentery Sayers, U of Victoria; Benjamin M. Schmidt, Northeastern U; Scott Selisker, U of Arizona; Jonathan Senchyne, U of Wisconsin, Madison; Andrew Stauffer, U of Virginia; Joanna Swafford, SUNY New Paltz; Toniesha L. Taylor, Prairie View A&M U; Dennis Tenen; Melissa Terras, U College London; Anna Tione; Ted Underwood, U of Illinois, Urbana–Champaign; Ethan Watrall, Michigan State U; Jacqueline Wernimont, Arizona State U; Laura Wexler, Yale U; Hong-An Wu, U of Illinois, Urbana–Champaign.

Proactive work design in unstructured work: New challenges and opportunities

Proactive work design in unstructured work: New challenges and opportunities PDF Author: Arianna Costantini
Publisher: Frontiers Media SA
ISBN: 283251619X
Category : Science
Languages : en
Pages : 138

Get Book Here

Book Description


Digital Transformation and New Challenges

Digital Transformation and New Challenges PDF Author: Evgeny Zaramenskikh
Publisher: Springer Nature
ISBN: 3030439933
Category : Computers
Languages : en
Pages : 157

Get Book Here

Book Description
This book gathers the best papers presented at the first conference held by the Russian chapter of the Association for Information Systems (AIS). It shares the latest insights into various aspects of the digitalization of the economy and the consequences of transformation in public administration, business and public life. Integrating a broad range of analytical perspectives, including economic, social and, technological, this interdisciplinary book is particularly relevant for scientists, digital technology users, companies and public institutions.

Design Justice

Design Justice PDF Author: Sasha Costanza-Chock
Publisher: MIT Press
ISBN: 0262043459
Category : Design
Languages : en
Pages : 358

Get Book Here

Book Description
An exploration of how design might be led by marginalized communities, dismantle structural inequality, and advance collective liberation and ecological survival. What is the relationship between design, power, and social justice? “Design justice” is an approach to design that is led by marginalized communities and that aims expilcitly to challenge, rather than reproduce, structural inequalities. It has emerged from a growing community of designers in various fields who work closely with social movements and community-based organizations around the world. This book explores the theory and practice of design justice, demonstrates how universalist design principles and practices erase certain groups of people—specifically, those who are intersectionally disadvantaged or multiply burdened under the matrix of domination (white supremacist heteropatriarchy, ableism, capitalism, and settler colonialism)—and invites readers to “build a better world, a world where many worlds fit; linked worlds of collective liberation and ecological sustainability.” Along the way, the book documents a multitude of real-world community-led design practices, each grounded in a particular social movement. Design Justice goes beyond recent calls for design for good, user-centered design, and employment diversity in the technology and design professions; it connects design to larger struggles for collective liberation and ecological survival.

Machine Learning Design Patterns

Machine Learning Design Patterns PDF Author: Valliappa Lakshmanan
Publisher: O'Reilly Media
ISBN: 1098115759
Category : Computers
Languages : en
Pages : 408

Get Book Here

Book Description
The design patterns in this book capture best practices and solutions to recurring problems in machine learning. The authors, three Google engineers, catalog proven methods to help data scientists tackle common problems throughout the ML process. These design patterns codify the experience of hundreds of experts into straightforward, approachable advice. In this book, you will find detailed explanations of 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the best technique for your situation. You'll learn how to: Identify and mitigate common challenges when training, evaluating, and deploying ML models Represent data for different ML model types, including embeddings, feature crosses, and more Choose the right model type for specific problems Build a robust training loop that uses checkpoints, distribution strategy, and hyperparameter tuning Deploy scalable ML systems that you can retrain and update to reflect new data Interpret model predictions for stakeholders and ensure models are treating users fairly

Technology, Design and the Arts - Opportunities and Challenges

Technology, Design and the Arts - Opportunities and Challenges PDF Author: Rae Earnshaw
Publisher: Springer Nature
ISBN: 3030420973
Category : Computers
Languages : en
Pages : 392

Get Book Here

Book Description
This open access book details the relationship between the artist and their created works, using tools such as information technology, computer environments, and interactive devices, for a range of information sources and application domains. This has produced new kinds of created works which can be viewed, explored, and interacted with, either as an installation or via a virtual environment such as the Internet. These processes generate new dimensions of understanding and experience for both the artist and the public’s relationships with the works that are produced. This has raised a variety of interdisciplinary opportunities and issues, and these are examined. The symbiotic relationship between artistic works and the cultural context in which they are produced is reviewed. Technology can provide continuity by making traditional methods and techniques more efficient and effective. It can also provide discontinuity by opening up new perspectives and paradigms. This can generate new ideas, and produce a greater understanding of artistic processes and how they are implemented in practice. Tools have been used from the earliest times to create and modify artistic works. For example, naturally occurring pigments have been used for cave paintings. What has been created provides insight into the cultural context and social environment at the time of creation. There is an interplay between the goal of the creator, the selection and use of appropriate tools, and the materials and representations chosen. Technology, Design and the Arts - Opportunities and Challenges is relevant for artists and technologists and those engaged in interdisciplinary research and development at the boundaries between these disciplines.