Author: Fuad Aleskerov
Publisher: CRC Press
ISBN: 1000536106
Category : Technology & Engineering
Languages : en
Pages : 114
Book Description
Over the last number of years there has been a growing interest in the analysis of complex networks which describe a wide range of real-world systems in nature and society. Identification of the central elements in such networks is one of the key research areas. Solutions to this problem are important for making strategic decisions and studying the behavior of dynamic processes, e.g. epidemic spread. The importance of nodes has been studied using various centrality measures. Generally, it should be considered that most real systems are not homogeneous: nodes may have individual attributes and influence each other in groups while connections between nodes may describe different types of relations. Thus, critical nodes detection is not a straightforward process. New Centrality Measures in Networks presents a class of new centrality measures which take into account individual attributes of nodes, the possibility of group influence and long-range interactions and discusses all their new features. The book provides a wide range of applications of network analysis in several fields – financial networks, international migration, global trade, global food network, arms transfers, networks of terrorist groups, and networks of international journals in economics. Real-world studies of networks indicate that the proposed centrality measures can identify important nodes in different applications. Starting from the basic ideas, the development of the indices and their advantages compared to existing centrality measures are presented. Features Built around real-world case studies in a variety of different areas (finance, migration, trade, etc.) Suitable for students and professional researchers with an interest in complex network analysis Paired with a software package for readers who wish to apply the proposed models of centrality (in Python) available at https://github.com/SergSHV/slric.
New Centrality Measures in Networks
Author: Fuad Aleskerov
Publisher: CRC Press
ISBN: 1000536106
Category : Technology & Engineering
Languages : en
Pages : 114
Book Description
Over the last number of years there has been a growing interest in the analysis of complex networks which describe a wide range of real-world systems in nature and society. Identification of the central elements in such networks is one of the key research areas. Solutions to this problem are important for making strategic decisions and studying the behavior of dynamic processes, e.g. epidemic spread. The importance of nodes has been studied using various centrality measures. Generally, it should be considered that most real systems are not homogeneous: nodes may have individual attributes and influence each other in groups while connections between nodes may describe different types of relations. Thus, critical nodes detection is not a straightforward process. New Centrality Measures in Networks presents a class of new centrality measures which take into account individual attributes of nodes, the possibility of group influence and long-range interactions and discusses all their new features. The book provides a wide range of applications of network analysis in several fields – financial networks, international migration, global trade, global food network, arms transfers, networks of terrorist groups, and networks of international journals in economics. Real-world studies of networks indicate that the proposed centrality measures can identify important nodes in different applications. Starting from the basic ideas, the development of the indices and their advantages compared to existing centrality measures are presented. Features Built around real-world case studies in a variety of different areas (finance, migration, trade, etc.) Suitable for students and professional researchers with an interest in complex network analysis Paired with a software package for readers who wish to apply the proposed models of centrality (in Python) available at https://github.com/SergSHV/slric.
Publisher: CRC Press
ISBN: 1000536106
Category : Technology & Engineering
Languages : en
Pages : 114
Book Description
Over the last number of years there has been a growing interest in the analysis of complex networks which describe a wide range of real-world systems in nature and society. Identification of the central elements in such networks is one of the key research areas. Solutions to this problem are important for making strategic decisions and studying the behavior of dynamic processes, e.g. epidemic spread. The importance of nodes has been studied using various centrality measures. Generally, it should be considered that most real systems are not homogeneous: nodes may have individual attributes and influence each other in groups while connections between nodes may describe different types of relations. Thus, critical nodes detection is not a straightforward process. New Centrality Measures in Networks presents a class of new centrality measures which take into account individual attributes of nodes, the possibility of group influence and long-range interactions and discusses all their new features. The book provides a wide range of applications of network analysis in several fields – financial networks, international migration, global trade, global food network, arms transfers, networks of terrorist groups, and networks of international journals in economics. Real-world studies of networks indicate that the proposed centrality measures can identify important nodes in different applications. Starting from the basic ideas, the development of the indices and their advantages compared to existing centrality measures are presented. Features Built around real-world case studies in a variety of different areas (finance, migration, trade, etc.) Suitable for students and professional researchers with an interest in complex network analysis Paired with a software package for readers who wish to apply the proposed models of centrality (in Python) available at https://github.com/SergSHV/slric.
Complex Networks
Author: Ronaldo Menezes
Publisher: Springer
ISBN: 3642302874
Category : Technology & Engineering
Languages : en
Pages : 265
Book Description
In the last decade we have seen the emergence of a new inter-disciplinary field concentrating on the understanding large networks which are dynamic, large, open, and have a structure that borders order and randomness. The field of Complex Networks has helped us better understand many complex phenomena such as spread of decease, protein interaction, social relationships, to name but a few. The field of Complex Networks has received a major boost caused by the widespread availability of huge network data resources in the last years. One of the most surprising findings is that real networks behave very distinct from traditional assumptions of network theory. Traditionally, real networks were supposed to have a majority of nodes of about the same number of connections around an average. This is typically modeled by random graphs. But modern network research could show that the majority of nodes of real networks is very low connected, and, by contrast, there exists some nodes of very extreme connectivity (hubs). The current theories coupled with the availability of data makes the field of Complex Networks (sometimes called Network Sciences) one of the most promising interdisciplinary disciplines of today. This sample of works in this book gives as a taste of what is in the horizon such controlling the dynamics of a network and in the network, using social interactions to improve urban planning, ranking in music, and the understanding knowledge transfer in influence networks.
Publisher: Springer
ISBN: 3642302874
Category : Technology & Engineering
Languages : en
Pages : 265
Book Description
In the last decade we have seen the emergence of a new inter-disciplinary field concentrating on the understanding large networks which are dynamic, large, open, and have a structure that borders order and randomness. The field of Complex Networks has helped us better understand many complex phenomena such as spread of decease, protein interaction, social relationships, to name but a few. The field of Complex Networks has received a major boost caused by the widespread availability of huge network data resources in the last years. One of the most surprising findings is that real networks behave very distinct from traditional assumptions of network theory. Traditionally, real networks were supposed to have a majority of nodes of about the same number of connections around an average. This is typically modeled by random graphs. But modern network research could show that the majority of nodes of real networks is very low connected, and, by contrast, there exists some nodes of very extreme connectivity (hubs). The current theories coupled with the availability of data makes the field of Complex Networks (sometimes called Network Sciences) one of the most promising interdisciplinary disciplines of today. This sample of works in this book gives as a taste of what is in the horizon such controlling the dynamics of a network and in the network, using social interactions to improve urban planning, ranking in music, and the understanding knowledge transfer in influence networks.
Centrality Metrics for Complex Network Analysis
Author: Natarajan Meghanathan
Publisher: Information Science Reference
ISBN: 9781522538042
Category : Computers
Languages : en
Pages : 0
Book Description
As network science and technology continues to gain popularity, it becomes imperative to develop procedures to examine emergent network domains, as well as classical networks, to help ensure their overall optimization. Centrality Metrics for Complex Network Analysis: Emerging Research and Opportunities is a pivotal reference source for the latest research findings on centrality metrics and their broader applications for different categories of networks including wireless sensor networks, curriculum networks, social networks etc. Featuring extensive coverage on relevant areas, such as complex network graphs, node centrality metrics, and mobile sensor networks, this publication is an ideal resource for students, faculty, industry practitioners, and business professionals interested in theoretical concepts and current developments in network domains.
Publisher: Information Science Reference
ISBN: 9781522538042
Category : Computers
Languages : en
Pages : 0
Book Description
As network science and technology continues to gain popularity, it becomes imperative to develop procedures to examine emergent network domains, as well as classical networks, to help ensure their overall optimization. Centrality Metrics for Complex Network Analysis: Emerging Research and Opportunities is a pivotal reference source for the latest research findings on centrality metrics and their broader applications for different categories of networks including wireless sensor networks, curriculum networks, social networks etc. Featuring extensive coverage on relevant areas, such as complex network graphs, node centrality metrics, and mobile sensor networks, this publication is an ideal resource for students, faculty, industry practitioners, and business professionals interested in theoretical concepts and current developments in network domains.
Network Analysis
Author: Ulrik Brandes
Publisher: Springer
ISBN: 3540319557
Category : Computers
Languages : en
Pages : 481
Book Description
‘Network’ is a heavily overloaded term, so that ‘network analysis’ means different things to different people. Specific forms of network analysis are used in the study of diverse structures such as the Internet, interlocking directorates, transportation systems, epidemic spreading, metabolic pathways, the Web graph, electrical circuits, project plans, and so on. There is, however, a broad methodological foundation which is quickly becoming a prerequisite for researchers and practitioners working with network models. From a computer science perspective, network analysis is applied graph theory. Unlike standard graph theory books, the content of this book is organized according to methods for specific levels of analysis (element, group, network) rather than abstract concepts like paths, matchings, or spanning subgraphs. Its topics therefore range from vertex centrality to graph clustering and the evolution of scale-free networks. In 15 coherent chapters, this monograph-like tutorial book introduces and surveys the concepts and methods that drive network analysis, and is thus the first book to do so from a methodological perspective independent of specific application areas.
Publisher: Springer
ISBN: 3540319557
Category : Computers
Languages : en
Pages : 481
Book Description
‘Network’ is a heavily overloaded term, so that ‘network analysis’ means different things to different people. Specific forms of network analysis are used in the study of diverse structures such as the Internet, interlocking directorates, transportation systems, epidemic spreading, metabolic pathways, the Web graph, electrical circuits, project plans, and so on. There is, however, a broad methodological foundation which is quickly becoming a prerequisite for researchers and practitioners working with network models. From a computer science perspective, network analysis is applied graph theory. Unlike standard graph theory books, the content of this book is organized according to methods for specific levels of analysis (element, group, network) rather than abstract concepts like paths, matchings, or spanning subgraphs. Its topics therefore range from vertex centrality to graph clustering and the evolution of scale-free networks. In 15 coherent chapters, this monograph-like tutorial book introduces and surveys the concepts and methods that drive network analysis, and is thus the first book to do so from a methodological perspective independent of specific application areas.
Business and Consumer Analytics: New Ideas
Author: Pablo Moscato
Publisher: Springer
ISBN: 3030062228
Category : Computers
Languages : en
Pages : 1000
Book Description
This two-volume handbook presents a collection of novel methodologies with applications and illustrative examples in the areas of data-driven computational social sciences. Throughout this handbook, the focus is kept specifically on business and consumer-oriented applications with interesting sections ranging from clustering and network analysis, meta-analytics, memetic algorithms, machine learning, recommender systems methodologies, parallel pattern mining and data mining to specific applications in market segmentation, travel, fashion or entertainment analytics. A must-read for anyone in data-analytics, marketing, behavior modelling and computational social science, interested in the latest applications of new computer science methodologies. The chapters are contributed by leading experts in the associated fields.The chapters cover technical aspects at different levels, some of which are introductory and could be used for teaching. Some chapters aim at building a common understanding of the methodologies and recent application areas including the introduction of new theoretical results in the complexity of core problems. Business and marketing professionals may use the book to familiarize themselves with some important foundations of data science. The work is a good starting point to establish an open dialogue of communication between professionals and researchers from different fields. Together, the two volumes present a number of different new directions in Business and Customer Analytics with an emphasis in personalization of services, the development of new mathematical models and new algorithms, heuristics and metaheuristics applied to the challenging problems in the field. Sections of the book have introductory material to more specific and advanced themes in some of the chapters, allowing the volumes to be used as an advanced textbook. Clustering, Proximity Graphs, Pattern Mining, Frequent Itemset Mining, Feature Engineering, Network and Community Detection, Network-based Recommending Systems and Visualization, are some of the topics in the first volume. Techniques on Memetic Algorithms and their applications to Business Analytics and Data Science are surveyed in the second volume; applications in Team Orienteering, Competitive Facility-location, and Visualization of Products and Consumers are also discussed. The second volume also includes an introduction to Meta-Analytics, and to the application areas of Fashion and Travel Analytics. Overall, the two-volume set helps to describe some fundamentals, acts as a bridge between different disciplines, and presents important results in a rapidly moving field combining powerful optimization techniques allied to new mathematical models critical for personalization of services. Academics and professionals working in the area of business anyalytics, data science, operations research and marketing will find this handbook valuable as a reference. Students studying these fields will find this handbook useful and helpful as a secondary textbook.
Publisher: Springer
ISBN: 3030062228
Category : Computers
Languages : en
Pages : 1000
Book Description
This two-volume handbook presents a collection of novel methodologies with applications and illustrative examples in the areas of data-driven computational social sciences. Throughout this handbook, the focus is kept specifically on business and consumer-oriented applications with interesting sections ranging from clustering and network analysis, meta-analytics, memetic algorithms, machine learning, recommender systems methodologies, parallel pattern mining and data mining to specific applications in market segmentation, travel, fashion or entertainment analytics. A must-read for anyone in data-analytics, marketing, behavior modelling and computational social science, interested in the latest applications of new computer science methodologies. The chapters are contributed by leading experts in the associated fields.The chapters cover technical aspects at different levels, some of which are introductory and could be used for teaching. Some chapters aim at building a common understanding of the methodologies and recent application areas including the introduction of new theoretical results in the complexity of core problems. Business and marketing professionals may use the book to familiarize themselves with some important foundations of data science. The work is a good starting point to establish an open dialogue of communication between professionals and researchers from different fields. Together, the two volumes present a number of different new directions in Business and Customer Analytics with an emphasis in personalization of services, the development of new mathematical models and new algorithms, heuristics and metaheuristics applied to the challenging problems in the field. Sections of the book have introductory material to more specific and advanced themes in some of the chapters, allowing the volumes to be used as an advanced textbook. Clustering, Proximity Graphs, Pattern Mining, Frequent Itemset Mining, Feature Engineering, Network and Community Detection, Network-based Recommending Systems and Visualization, are some of the topics in the first volume. Techniques on Memetic Algorithms and their applications to Business Analytics and Data Science are surveyed in the second volume; applications in Team Orienteering, Competitive Facility-location, and Visualization of Products and Consumers are also discussed. The second volume also includes an introduction to Meta-Analytics, and to the application areas of Fashion and Travel Analytics. Overall, the two-volume set helps to describe some fundamentals, acts as a bridge between different disciplines, and presents important results in a rapidly moving field combining powerful optimization techniques allied to new mathematical models critical for personalization of services. Academics and professionals working in the area of business anyalytics, data science, operations research and marketing will find this handbook valuable as a reference. Students studying these fields will find this handbook useful and helpful as a secondary textbook.
Complex Networks
Author: Vito Latora
Publisher: Cambridge University Press
ISBN: 1107103185
Category : Computers
Languages : en
Pages : 585
Book Description
A comprehensive introduction to the theory and applications of complex network science, complete with real-world data sets and software tools.
Publisher: Cambridge University Press
ISBN: 1107103185
Category : Computers
Languages : en
Pages : 585
Book Description
A comprehensive introduction to the theory and applications of complex network science, complete with real-world data sets and software tools.
Computational Discrete Mathematics
Author: Sriram Pemmaraju
Publisher: Cambridge University Press
ISBN: 1107268710
Category : Computers
Languages : en
Pages : 615
Book Description
This book was first published in 2003. Combinatorica, an extension to the popular computer algebra system Mathematica®, is the most comprehensive software available for teaching and research applications of discrete mathematics, particularly combinatorics and graph theory. This book is the definitive reference/user's guide to Combinatorica, with examples of all 450 Combinatorica functions in action, along with the associated mathematical and algorithmic theory. The authors cover classical and advanced topics on the most important combinatorial objects: permutations, subsets, partitions, and Young tableaux, as well as all important areas of graph theory: graph construction operations, invariants, embeddings, and algorithmic graph theory. In addition to being a research tool, Combinatorica makes discrete mathematics accessible in new and exciting ways to a wide variety of people, by encouraging computational experimentation and visualization. The book contains no formal proofs, but enough discussion to understand and appreciate all the algorithms and theorems it contains.
Publisher: Cambridge University Press
ISBN: 1107268710
Category : Computers
Languages : en
Pages : 615
Book Description
This book was first published in 2003. Combinatorica, an extension to the popular computer algebra system Mathematica®, is the most comprehensive software available for teaching and research applications of discrete mathematics, particularly combinatorics and graph theory. This book is the definitive reference/user's guide to Combinatorica, with examples of all 450 Combinatorica functions in action, along with the associated mathematical and algorithmic theory. The authors cover classical and advanced topics on the most important combinatorial objects: permutations, subsets, partitions, and Young tableaux, as well as all important areas of graph theory: graph construction operations, invariants, embeddings, and algorithmic graph theory. In addition to being a research tool, Combinatorica makes discrete mathematics accessible in new and exciting ways to a wide variety of people, by encouraging computational experimentation and visualization. The book contains no formal proofs, but enough discussion to understand and appreciate all the algorithms and theorems it contains.
Handbook of Research on Advanced Applications of Graph Theory in Modern Society
Author: Pal, Madhumangal
Publisher: IGI Global
ISBN: 1522593829
Category : Computers
Languages : en
Pages : 615
Book Description
In the world of mathematics and computer science, technological advancements are constantly being researched and applied to ongoing issues. Setbacks in social networking, engineering, and automation are themes that affect everyday life, and researchers have been looking for new techniques in which to solve these challenges. Graph theory is a widely studied topic that is now being applied to real-life problems. The Handbook of Research on Advanced Applications of Graph Theory in Modern Society is an essential reference source that discusses recent developments on graph theory, as well as its representation in social networks, artificial neural networks, and many complex networks. The book aims to study results that are useful in the fields of robotics and machine learning and will examine different engineering issues that are closely related to fuzzy graph theory. Featuring research on topics such as artificial neural systems and robotics, this book is ideally designed for mathematicians, research scholars, practitioners, professionals, engineers, and students seeking an innovative overview of graphic theory.
Publisher: IGI Global
ISBN: 1522593829
Category : Computers
Languages : en
Pages : 615
Book Description
In the world of mathematics and computer science, technological advancements are constantly being researched and applied to ongoing issues. Setbacks in social networking, engineering, and automation are themes that affect everyday life, and researchers have been looking for new techniques in which to solve these challenges. Graph theory is a widely studied topic that is now being applied to real-life problems. The Handbook of Research on Advanced Applications of Graph Theory in Modern Society is an essential reference source that discusses recent developments on graph theory, as well as its representation in social networks, artificial neural networks, and many complex networks. The book aims to study results that are useful in the fields of robotics and machine learning and will examine different engineering issues that are closely related to fuzzy graph theory. Featuring research on topics such as artificial neural systems and robotics, this book is ideally designed for mathematicians, research scholars, practitioners, professionals, engineers, and students seeking an innovative overview of graphic theory.
Principles of Social Networking
Author: Anupam Biswas
Publisher: Springer Nature
ISBN: 9811633983
Category : Technology & Engineering
Languages : en
Pages : 447
Book Description
This book presents new and innovative current discoveries in social networking which contribute enough knowledge to the research community. The book includes chapters presenting research advances in social network analysis and issues emerged with diverse social media data. The book also presents applications of the theoretical algorithms and network models to analyze real-world large-scale social networks and the data emanating from them as well as characterize the topology and behavior of these networks. Furthermore, the book covers extremely debated topics, surveys, future trends, issues, and challenges.
Publisher: Springer Nature
ISBN: 9811633983
Category : Technology & Engineering
Languages : en
Pages : 447
Book Description
This book presents new and innovative current discoveries in social networking which contribute enough knowledge to the research community. The book includes chapters presenting research advances in social network analysis and issues emerged with diverse social media data. The book also presents applications of the theoretical algorithms and network models to analyze real-world large-scale social networks and the data emanating from them as well as characterize the topology and behavior of these networks. Furthermore, the book covers extremely debated topics, surveys, future trends, issues, and challenges.
Models and Methods in Social Network Analysis
Author: Peter J. Carrington
Publisher:
ISBN: 9780521809597
Category : Psychology
Languages : en
Pages : 328
Book Description
Models and Methods in Social Network Analysis presents the most important developments in quantitative models and methods for analyzing social network data that have appeared during the 1990s. Intended as a complement to Wasserman and Faust's Social Network Analysis: Methods and Applications, it is a collection of articles by leading methodologists reviewing advances in their particular areas of network methods. Reviewed are advances in network measurement, network sampling, the analysis of centrality, positional analysis or blockmodelling, the analysis of diffusion through networks, the analysis of affiliation or 'two-mode' networks, the theory of random graphs, dependence graphs, exponential families of random graphs, the analysis of longitudinal network data, graphical techniques for exploring network data, and software for the analysis of social networks.
Publisher:
ISBN: 9780521809597
Category : Psychology
Languages : en
Pages : 328
Book Description
Models and Methods in Social Network Analysis presents the most important developments in quantitative models and methods for analyzing social network data that have appeared during the 1990s. Intended as a complement to Wasserman and Faust's Social Network Analysis: Methods and Applications, it is a collection of articles by leading methodologists reviewing advances in their particular areas of network methods. Reviewed are advances in network measurement, network sampling, the analysis of centrality, positional analysis or blockmodelling, the analysis of diffusion through networks, the analysis of affiliation or 'two-mode' networks, the theory of random graphs, dependence graphs, exponential families of random graphs, the analysis of longitudinal network data, graphical techniques for exploring network data, and software for the analysis of social networks.