Author: Gulshan Shrivastava
Publisher: CRC Press
ISBN: 1000762246
Category : Computers
Languages : en
Pages : 344
Book Description
This comprehensive and timely book, New Age Analytics: Transforming the Internet through Machine Learning, IoT, and Trust Modeling, explores the importance of tools and techniques used in machine learning, big data mining, and more. The book explains how advancements in the world of the web have been achieved and how the experiences of users can be analyzed. It looks at data gathering by the various electronic means and explores techniques for analysis and management, how to manage voluminous data, user responses, and more. This volume provides an abundance of valuable information for professionals and researchers working in the field of business analytics, big data, social network data, computer science, analytical engineering, and forensic analysis. Moreover, the book provides insights and support from both practitioners and academia in order to highlight the most debated aspects in the field.
New Age Analytics
Author: Gulshan Shrivastava
Publisher: CRC Press
ISBN: 1000762246
Category : Computers
Languages : en
Pages : 344
Book Description
This comprehensive and timely book, New Age Analytics: Transforming the Internet through Machine Learning, IoT, and Trust Modeling, explores the importance of tools and techniques used in machine learning, big data mining, and more. The book explains how advancements in the world of the web have been achieved and how the experiences of users can be analyzed. It looks at data gathering by the various electronic means and explores techniques for analysis and management, how to manage voluminous data, user responses, and more. This volume provides an abundance of valuable information for professionals and researchers working in the field of business analytics, big data, social network data, computer science, analytical engineering, and forensic analysis. Moreover, the book provides insights and support from both practitioners and academia in order to highlight the most debated aspects in the field.
Publisher: CRC Press
ISBN: 1000762246
Category : Computers
Languages : en
Pages : 344
Book Description
This comprehensive and timely book, New Age Analytics: Transforming the Internet through Machine Learning, IoT, and Trust Modeling, explores the importance of tools and techniques used in machine learning, big data mining, and more. The book explains how advancements in the world of the web have been achieved and how the experiences of users can be analyzed. It looks at data gathering by the various electronic means and explores techniques for analysis and management, how to manage voluminous data, user responses, and more. This volume provides an abundance of valuable information for professionals and researchers working in the field of business analytics, big data, social network data, computer science, analytical engineering, and forensic analysis. Moreover, the book provides insights and support from both practitioners and academia in order to highlight the most debated aspects in the field.
Artificial Intelligence and Legal Analytics
Author: Kevin D. Ashley
Publisher: Cambridge University Press
ISBN: 1107171504
Category : Computers
Languages : en
Pages : 451
Book Description
This book describes how text analytics and computational models of legal reasoning will improve legal IR and let computers help humans solve legal problems.
Publisher: Cambridge University Press
ISBN: 1107171504
Category : Computers
Languages : en
Pages : 451
Book Description
This book describes how text analytics and computational models of legal reasoning will improve legal IR and let computers help humans solve legal problems.
HBR's 10 Must Reads on AI, Analytics, and the New Machine Age (with bonus article "Why Every Company Needs an Augmented Reality Strategy" by Michael E. Porter and James E. Heppelmann)
Author: Harvard Business Review
Publisher: Harvard Business Press
ISBN: 1633696855
Category : Business & Economics
Languages : en
Pages : 193
Book Description
Intelligent machines are revolutionizing business. Machine learning and data analytics are powering a wave of groundbreaking technologies. Is your company ready? If you read nothing else on how intelligent machines are revolutionizing business, read these 10 articles. We've combed through hundreds of Harvard Business Review articles and selected the most important ones to help you understand how these technologies work together, how to adopt them, and why your strategy can't ignore them. In this book you'll learn how: Data science, driven by artificial intelligence and machine learning, is yielding unprecedented business insights Blockchain has the potential to restructure the economy Drones and driverless vehicles are becoming essential tools 3-D printing is making new business models possible Augmented reality is transforming retail and manufacturing Smart speakers are redefining the rules of marketing Humans and machines are working together to reach new levels of productivity This collection of articles includes "Artificial Intelligence for the Real World," by Thomas H. Davenport and Rajeev Ronanki; "Stitch Fix's CEO on Selling Personal Style to the Mass Market," by Katrina Lake; "Algorithms Need Managers, Too," by Michael Luca, Jon Kleinberg, and Sendhil Mullainathan; "Marketing in the Age of Alexa," by Niraj Dawar; "Why Every Organization Needs an Augmented Reality Strategy," by Michael E. Porter and James E. Heppelmann; "Drones Go to Work," by Chris Anderson; "The Truth About Blockchain," by Marco Iansiti and Karim R. Lakhani; "The 3-D Printing Playbook," by Richard A. D’Aveni; "Collaborative Intelligence: Humans and AI Are Joining Forces," by H. James Wilson and Paul R. Daugherty; "When Your Boss Wears Metal Pants," by Walter Frick; and "Managing Our Hub Economy," by Marco Iansiti and Karim R. Lakhani.
Publisher: Harvard Business Press
ISBN: 1633696855
Category : Business & Economics
Languages : en
Pages : 193
Book Description
Intelligent machines are revolutionizing business. Machine learning and data analytics are powering a wave of groundbreaking technologies. Is your company ready? If you read nothing else on how intelligent machines are revolutionizing business, read these 10 articles. We've combed through hundreds of Harvard Business Review articles and selected the most important ones to help you understand how these technologies work together, how to adopt them, and why your strategy can't ignore them. In this book you'll learn how: Data science, driven by artificial intelligence and machine learning, is yielding unprecedented business insights Blockchain has the potential to restructure the economy Drones and driverless vehicles are becoming essential tools 3-D printing is making new business models possible Augmented reality is transforming retail and manufacturing Smart speakers are redefining the rules of marketing Humans and machines are working together to reach new levels of productivity This collection of articles includes "Artificial Intelligence for the Real World," by Thomas H. Davenport and Rajeev Ronanki; "Stitch Fix's CEO on Selling Personal Style to the Mass Market," by Katrina Lake; "Algorithms Need Managers, Too," by Michael Luca, Jon Kleinberg, and Sendhil Mullainathan; "Marketing in the Age of Alexa," by Niraj Dawar; "Why Every Organization Needs an Augmented Reality Strategy," by Michael E. Porter and James E. Heppelmann; "Drones Go to Work," by Chris Anderson; "The Truth About Blockchain," by Marco Iansiti and Karim R. Lakhani; "The 3-D Printing Playbook," by Richard A. D’Aveni; "Collaborative Intelligence: Humans and AI Are Joining Forces," by H. James Wilson and Paul R. Daugherty; "When Your Boss Wears Metal Pants," by Walter Frick; and "Managing Our Hub Economy," by Marco Iansiti and Karim R. Lakhani.
The Golden Age of Data
Author: Don Grady
Publisher: Routledge
ISBN: 1000721728
Category : Language Arts & Disciplines
Languages : en
Pages : 250
Book Description
Audience and media analytics is more important now than ever, and this latest volume in the cutting-edge BEA Electronic Media Research Series collects some of the top scholars working with big data and analytics today. These chapters describe the development and help define media analytics as an academic discipline and professional practice. Understanding audiences is integral to creating and distributing media messages and the study of media analytics requires knowing a range of skills including research methods, the necessary tools available, familiarity with statistical procedures, and a mindset to provide insights and apply findings. This book summarizes the insights of analytics practitioners regarding the current state of legacy media analysis and social media analytics. Topics covered include the evolution of media technologies, the teaching of media measurement and analytics, the transition taking place in media research, and the use of media analytics to answer meaningful questions, drive content creation, and engage with audiences.
Publisher: Routledge
ISBN: 1000721728
Category : Language Arts & Disciplines
Languages : en
Pages : 250
Book Description
Audience and media analytics is more important now than ever, and this latest volume in the cutting-edge BEA Electronic Media Research Series collects some of the top scholars working with big data and analytics today. These chapters describe the development and help define media analytics as an academic discipline and professional practice. Understanding audiences is integral to creating and distributing media messages and the study of media analytics requires knowing a range of skills including research methods, the necessary tools available, familiarity with statistical procedures, and a mindset to provide insights and apply findings. This book summarizes the insights of analytics practitioners regarding the current state of legacy media analysis and social media analytics. Topics covered include the evolution of media technologies, the teaching of media measurement and analytics, the transition taking place in media research, and the use of media analytics to answer meaningful questions, drive content creation, and engage with audiences.
Health Data Governance for the Digital Age Implementing the OECD Recommendation on Health Data Governance
Author: OECD
Publisher: OECD Publishing
ISBN: 9264660550
Category :
Languages : en
Pages : 80
Book Description
Health data are essential to modern health care delivery, health system management and research and innovation, and must be well governed to foster their use while protecting privacy and data security. The 2016 OECD Recommendation on Health Data Governance provides a roadmap towards more harmonised approaches to health data governance across countries.
Publisher: OECD Publishing
ISBN: 9264660550
Category :
Languages : en
Pages : 80
Book Description
Health data are essential to modern health care delivery, health system management and research and innovation, and must be well governed to foster their use while protecting privacy and data security. The 2016 OECD Recommendation on Health Data Governance provides a roadmap towards more harmonised approaches to health data governance across countries.
Data Economy in the Digital Age
Author: Samiksha Shukla
Publisher: Springer Nature
ISBN: 9819976774
Category : Technology & Engineering
Languages : en
Pages : 139
Book Description
The book is a comprehensive guide that explores the concept of data economy and its implications in today's world. The book discusses the principles and components of the ecosystem, the challenges and opportunities presented by data monetization, and the potential risks related to data privacy. Real-life examples and case studies are included to understand the concepts better. The book is suitable for individuals in data science, economics, business, and technology and for students, academics, and policymakers. It is an excellent read for anyone interested in the data economy.
Publisher: Springer Nature
ISBN: 9819976774
Category : Technology & Engineering
Languages : en
Pages : 139
Book Description
The book is a comprehensive guide that explores the concept of data economy and its implications in today's world. The book discusses the principles and components of the ecosystem, the challenges and opportunities presented by data monetization, and the potential risks related to data privacy. Real-life examples and case studies are included to understand the concepts better. The book is suitable for individuals in data science, economics, business, and technology and for students, academics, and policymakers. It is an excellent read for anyone interested in the data economy.
Toward a Global Approach to Data in the Digital Age
Author: Mr. Vikram Haksar
Publisher: International Monetary Fund
ISBN: 1513599429
Category : Business & Economics
Languages : en
Pages : 43
Book Description
The ongoing economic and financial digitalization is making individual data a key input and source of value for companies across sectors, from bigtechs and pharmaceuticals to manufacturers and financial services providers. Data on human behavior and choices—our “likes,” purchase patterns, locations, social activities, biometrics, and financing choices—are being generated, collected, stored, and processed at an unprecedented scale.
Publisher: International Monetary Fund
ISBN: 1513599429
Category : Business & Economics
Languages : en
Pages : 43
Book Description
The ongoing economic and financial digitalization is making individual data a key input and source of value for companies across sectors, from bigtechs and pharmaceuticals to manufacturers and financial services providers. Data on human behavior and choices—our “likes,” purchase patterns, locations, social activities, biometrics, and financing choices—are being generated, collected, stored, and processed at an unprecedented scale.
Organizational Innovation in the Digital Age
Author: Carolina Machado
Publisher: Springer Nature
ISBN: 3030981835
Category : Technology & Engineering
Languages : en
Pages : 221
Book Description
This book focuses on how businesses manage organizational innovation processes. It explores the innovative policies and practices that organizations need to develop to allow them to be successful in this digital age. These policies will be based on key resources such as research and development and human resources and need to enable companies to respond to challenges they may face due to the digital economy. It explains how organizational innovation can be used to improve business’s development, performance, conduct and outcomes. Contributing to stimulate the growth and development of each individual in a dynamic, competitive and global economy, the present book can be used by a diverse range of readers, including academics, researchers, managers and engineers interested in matters related with Organizational Innovation in the Digital Age.
Publisher: Springer Nature
ISBN: 3030981835
Category : Technology & Engineering
Languages : en
Pages : 221
Book Description
This book focuses on how businesses manage organizational innovation processes. It explores the innovative policies and practices that organizations need to develop to allow them to be successful in this digital age. These policies will be based on key resources such as research and development and human resources and need to enable companies to respond to challenges they may face due to the digital economy. It explains how organizational innovation can be used to improve business’s development, performance, conduct and outcomes. Contributing to stimulate the growth and development of each individual in a dynamic, competitive and global economy, the present book can be used by a diverse range of readers, including academics, researchers, managers and engineers interested in matters related with Organizational Innovation in the Digital Age.
Predictive Analytics
Author: Eric Siegel
Publisher: John Wiley & Sons
ISBN: 1119153654
Category : Business & Economics
Languages : en
Pages : 368
Book Description
"Mesmerizing & fascinating..." —The Seattle Post-Intelligencer "The Freakonomics of big data." —Stein Kretsinger, founding executive of Advertising.com Award-winning | Used by over 30 universities | Translated into 9 languages An introduction for everyone. In this rich, fascinating — surprisingly accessible — introduction, leading expert Eric Siegel reveals how predictive analytics (aka machine learning) works, and how it affects everyone every day. Rather than a “how to” for hands-on techies, the book serves lay readers and experts alike by covering new case studies and the latest state-of-the-art techniques. Prediction is booming. It reinvents industries and runs the world. Companies, governments, law enforcement, hospitals, and universities are seizing upon the power. These institutions predict whether you're going to click, buy, lie, or die. Why? For good reason: predicting human behavior combats risk, boosts sales, fortifies healthcare, streamlines manufacturing, conquers spam, optimizes social networks, toughens crime fighting, and wins elections. How? Prediction is powered by the world's most potent, flourishing unnatural resource: data. Accumulated in large part as the by-product of routine tasks, data is the unsalted, flavorless residue deposited en masse as organizations churn away. Surprise! This heap of refuse is a gold mine. Big data embodies an extraordinary wealth of experience from which to learn. Predictive analytics (aka machine learning) unleashes the power of data. With this technology, the computer literally learns from data how to predict the future behavior of individuals. Perfect prediction is not possible, but putting odds on the future drives millions of decisions more effectively, determining whom to call, mail, investigate, incarcerate, set up on a date, or medicate. In this lucid, captivating introduction — now in its Revised and Updated edition — former Columbia University professor and Predictive Analytics World founder Eric Siegel reveals the power and perils of prediction: What type of mortgage risk Chase Bank predicted before the recession. Predicting which people will drop out of school, cancel a subscription, or get divorced before they even know it themselves. Why early retirement predicts a shorter life expectancy and vegetarians miss fewer flights. Five reasons why organizations predict death — including one health insurance company. How U.S. Bank and Obama for America calculated the way to most strongly persuade each individual. Why the NSA wants all your data: machine learning supercomputers to fight terrorism. How IBM's Watson computer used predictive modeling to answer questions and beat the human champs on TV's Jeopardy! How companies ascertain untold, private truths — how Target figures out you're pregnant and Hewlett-Packard deduces you're about to quit your job. How judges and parole boards rely on crime-predicting computers to decide how long convicts remain in prison. 182 examples from Airbnb, the BBC, Citibank, ConEd, Facebook, Ford, Google, the IRS, LinkedIn, Match.com, MTV, Netflix, PayPal, Pfizer, Spotify, Uber, UPS, Wikipedia, and more. How does predictive analytics work? This jam-packed book satisfies by demystifying the intriguing science under the hood. For future hands-on practitioners pursuing a career in the field, it sets a strong foundation, delivers the prerequisite knowledge, and whets your appetite for more. A truly omnipresent science, predictive analytics constantly affects our daily lives. Whether you are a
Publisher: John Wiley & Sons
ISBN: 1119153654
Category : Business & Economics
Languages : en
Pages : 368
Book Description
"Mesmerizing & fascinating..." —The Seattle Post-Intelligencer "The Freakonomics of big data." —Stein Kretsinger, founding executive of Advertising.com Award-winning | Used by over 30 universities | Translated into 9 languages An introduction for everyone. In this rich, fascinating — surprisingly accessible — introduction, leading expert Eric Siegel reveals how predictive analytics (aka machine learning) works, and how it affects everyone every day. Rather than a “how to” for hands-on techies, the book serves lay readers and experts alike by covering new case studies and the latest state-of-the-art techniques. Prediction is booming. It reinvents industries and runs the world. Companies, governments, law enforcement, hospitals, and universities are seizing upon the power. These institutions predict whether you're going to click, buy, lie, or die. Why? For good reason: predicting human behavior combats risk, boosts sales, fortifies healthcare, streamlines manufacturing, conquers spam, optimizes social networks, toughens crime fighting, and wins elections. How? Prediction is powered by the world's most potent, flourishing unnatural resource: data. Accumulated in large part as the by-product of routine tasks, data is the unsalted, flavorless residue deposited en masse as organizations churn away. Surprise! This heap of refuse is a gold mine. Big data embodies an extraordinary wealth of experience from which to learn. Predictive analytics (aka machine learning) unleashes the power of data. With this technology, the computer literally learns from data how to predict the future behavior of individuals. Perfect prediction is not possible, but putting odds on the future drives millions of decisions more effectively, determining whom to call, mail, investigate, incarcerate, set up on a date, or medicate. In this lucid, captivating introduction — now in its Revised and Updated edition — former Columbia University professor and Predictive Analytics World founder Eric Siegel reveals the power and perils of prediction: What type of mortgage risk Chase Bank predicted before the recession. Predicting which people will drop out of school, cancel a subscription, or get divorced before they even know it themselves. Why early retirement predicts a shorter life expectancy and vegetarians miss fewer flights. Five reasons why organizations predict death — including one health insurance company. How U.S. Bank and Obama for America calculated the way to most strongly persuade each individual. Why the NSA wants all your data: machine learning supercomputers to fight terrorism. How IBM's Watson computer used predictive modeling to answer questions and beat the human champs on TV's Jeopardy! How companies ascertain untold, private truths — how Target figures out you're pregnant and Hewlett-Packard deduces you're about to quit your job. How judges and parole boards rely on crime-predicting computers to decide how long convicts remain in prison. 182 examples from Airbnb, the BBC, Citibank, ConEd, Facebook, Ford, Google, the IRS, LinkedIn, Match.com, MTV, Netflix, PayPal, Pfizer, Spotify, Uber, UPS, Wikipedia, and more. How does predictive analytics work? This jam-packed book satisfies by demystifying the intriguing science under the hood. For future hands-on practitioners pursuing a career in the field, it sets a strong foundation, delivers the prerequisite knowledge, and whets your appetite for more. A truly omnipresent science, predictive analytics constantly affects our daily lives. Whether you are a
Big Data Analytics for Internet of Things
Author: Tausifa Jan Saleem
Publisher: John Wiley & Sons
ISBN: 1119740754
Category : Mathematics
Languages : en
Pages : 402
Book Description
BIG DATA ANALYTICS FOR INTERNET OF THINGS Discover the latest developments in IoT Big Data with a new resource from established and emerging leaders in the field Big Data Analytics for Internet of Things delivers a comprehensive overview of all aspects of big data analytics in Internet of Things (IoT) systems. The book includes discussions of the enabling technologies of IoT data analytics, types of IoT data analytics, challenges in IoT data analytics, demand for IoT data analytics, computing platforms, analytical tools, privacy, and security. The distinguished editors have included resources that address key techniques in the analysis of IoT data. The book demonstrates how to select the appropriate techniques to unearth valuable insights from IoT data and offers novel designs for IoT systems. With an abiding focus on practical strategies with concrete applications for data analysts and IoT professionals, Big Data Analytics for Internet of Things also offers readers: A thorough introduction to the Internet of Things, including IoT architectures, enabling technologies, and applications An exploration of the intersection between the Internet of Things and Big Data, including IoT as a source of Big Data, the unique characteristics of IoT data, etc. A discussion of the IoT data analytics, including the data analytical requirements of IoT data and the types of IoT analytics, including predictive, descriptive, and prescriptive analytics A treatment of machine learning techniques for IoT data analytics Perfect for professionals, industry practitioners, and researchers engaged in big data analytics related to IoT systems, Big Data Analytics for Internet of Things will also earn a place in the libraries of IoT designers and manufacturers interested in facilitating the efficient implementation of data analytics strategies.
Publisher: John Wiley & Sons
ISBN: 1119740754
Category : Mathematics
Languages : en
Pages : 402
Book Description
BIG DATA ANALYTICS FOR INTERNET OF THINGS Discover the latest developments in IoT Big Data with a new resource from established and emerging leaders in the field Big Data Analytics for Internet of Things delivers a comprehensive overview of all aspects of big data analytics in Internet of Things (IoT) systems. The book includes discussions of the enabling technologies of IoT data analytics, types of IoT data analytics, challenges in IoT data analytics, demand for IoT data analytics, computing platforms, analytical tools, privacy, and security. The distinguished editors have included resources that address key techniques in the analysis of IoT data. The book demonstrates how to select the appropriate techniques to unearth valuable insights from IoT data and offers novel designs for IoT systems. With an abiding focus on practical strategies with concrete applications for data analysts and IoT professionals, Big Data Analytics for Internet of Things also offers readers: A thorough introduction to the Internet of Things, including IoT architectures, enabling technologies, and applications An exploration of the intersection between the Internet of Things and Big Data, including IoT as a source of Big Data, the unique characteristics of IoT data, etc. A discussion of the IoT data analytics, including the data analytical requirements of IoT data and the types of IoT analytics, including predictive, descriptive, and prescriptive analytics A treatment of machine learning techniques for IoT data analytics Perfect for professionals, industry practitioners, and researchers engaged in big data analytics related to IoT systems, Big Data Analytics for Internet of Things will also earn a place in the libraries of IoT designers and manufacturers interested in facilitating the efficient implementation of data analytics strategies.