Neutron Diffusion

Neutron Diffusion PDF Author: S. Chakraverty
Publisher: CRC Press
ISBN: 1351667505
Category : Mathematics
Languages : en
Pages : 216

Get Book Here

Book Description
This book is designed for a systematic understanding of nuclear diffusion theory along with fuzzy/interval/stochastic uncertainty. This will serve to be a benchmark book for graduate & postgraduate students, teachers, engineers and researchers throughout the globe. In view of the recent developments in nuclear engineering, it is important to study the basic concepts of this field along with the diffusion processes for nuclear reactor design. Also, it is known that uncertainty is a must in every field of engineering and science and, in particular, with regards to nuclear-related problems. As such, one may need to understand the nuclear diffusion principles/theories corresponding with reliable and efficient techniques for the solution of such uncertain problems. Accordingly this book aims to provide a new direction for readers with basic concepts of reactor physics as well as neutron diffusion theory. On the other hand, it also includes uncertainty (in terms of fuzzy, interval, stochastic) and their applications in nuclear diffusion problems in a systematic manner, along with recent developments. The underlying concepts of the presented methods in this book may very well be used/extended to various other engineering disciplines viz. electronics, marine, chemical, mining engineering and other sciences such as physics, chemistry, biotechnology etc. This book then can be widely applied wherever one wants to model their physical problems in terms of non-probabilistic methods viz. fuzzy/stochastic for the true essence of the real problems.

Neutron Diffusion

Neutron Diffusion PDF Author: S. Chakraverty
Publisher: CRC Press
ISBN: 1351667505
Category : Mathematics
Languages : en
Pages : 216

Get Book Here

Book Description
This book is designed for a systematic understanding of nuclear diffusion theory along with fuzzy/interval/stochastic uncertainty. This will serve to be a benchmark book for graduate & postgraduate students, teachers, engineers and researchers throughout the globe. In view of the recent developments in nuclear engineering, it is important to study the basic concepts of this field along with the diffusion processes for nuclear reactor design. Also, it is known that uncertainty is a must in every field of engineering and science and, in particular, with regards to nuclear-related problems. As such, one may need to understand the nuclear diffusion principles/theories corresponding with reliable and efficient techniques for the solution of such uncertain problems. Accordingly this book aims to provide a new direction for readers with basic concepts of reactor physics as well as neutron diffusion theory. On the other hand, it also includes uncertainty (in terms of fuzzy, interval, stochastic) and their applications in nuclear diffusion problems in a systematic manner, along with recent developments. The underlying concepts of the presented methods in this book may very well be used/extended to various other engineering disciplines viz. electronics, marine, chemical, mining engineering and other sciences such as physics, chemistry, biotechnology etc. This book then can be widely applied wherever one wants to model their physical problems in terms of non-probabilistic methods viz. fuzzy/stochastic for the true essence of the real problems.

Nuclear Reactor Physics

Nuclear Reactor Physics PDF Author: Weston M. Stacey
Publisher: John Wiley & Sons
ISBN: 352781230X
Category : Science
Languages : en
Pages : 766

Get Book Here

Book Description
The third, revised edition of this popular textbook and reference, which has been translated into Russian and Chinese, expands the comprehensive and balanced coverage of nuclear reactor physics to include recent advances in understanding of this topic. The first part of the book covers basic reactor physics, including, but not limited to nuclear reaction data, neutron diffusion theory, reactor criticality and dynamics, neutron energy distribution, fuel burnup, reactor types and reactor safety. The second part then deals with such physically and mathematically more advanced topics as neutron transport theory, neutron slowing down, resonance absorption, neutron thermalization, perturbation and variational methods, homogenization, nodal and synthesis methods, and space-time neutron dynamics. For ease of reference, the detailed appendices contain nuclear data, useful mathematical formulas, an overview of special functions as well as introductions to matrix algebra and Laplace transforms. With its focus on conveying the in-depth knowledge needed by advanced student and professional nuclear engineers, this text is ideal for use in numerous courses and for self-study by professionals in basic nuclear reactor physics, advanced nuclear reactor physics, neutron transport theory, nuclear reactor dynamics and stability, nuclear reactor fuel cycle physics and other important topics in the field of nuclear reactor physics.

Nuclear Reactor

Nuclear Reactor PDF Author: John C. Lee
Publisher: John Wiley & Sons
ISBN: 1119582326
Category : Technology & Engineering
Languages : en
Pages : 658

Get Book Here

Book Description
An introductory text for broad areas of nuclear reactor physics Nuclear Reactor Physics and Engineering offers information on analysis, design, control, and operation of nuclear reactors. The author—a noted expert on the topic—explores the fundamentals and presents the mathematical formulations that are grounded in differential equations and linear algebra. The book puts the focus on the use of neutron diffusion theory for the development of techniques for lattice physics and global reactor system analysis. The author also includes recent developments in numerical algorithms, including the Krylov subspace method, and the MATLAB software, including the Simulink toolbox, for efficient studies of steady-state and transient reactor configurations. In addition, nuclear fuel cycle and associated economics analysis are presented, together with the application of modern control theory to reactor operation. This important book: Provides a comprehensive introduction to the fundamental concepts of nuclear reactor physics and engineering Contains information on nuclear reactor kinetics and reactor design analysis Presents illustrative examples to enhance understanding Offers self-contained derivation of fluid conservation equations Written for undergraduate and graduate students in nuclear engineering and practicing engineers, Nuclear Reactor Physics and Engineering covers the fundamental concepts and tools of nuclear reactor physics and analysis.

Neutron Diffusion Theory

Neutron Diffusion Theory PDF Author: Bengt Carlson
Publisher:
ISBN:
Category : Neutron transport theory
Languages : en
Pages : 40

Get Book Here

Book Description


Introduction to Nuclear Reactor Physics

Introduction to Nuclear Reactor Physics PDF Author: Robert E. Masterson
Publisher: CRC Press
ISBN: 1498751504
Category : Science
Languages : en
Pages : 1544

Get Book Here

Book Description
INTRODUCTION TO NUCLEAR REACTOR PHYSICS is the most comprehensive, modern and readable textbook for this course/module. It explains reactors, fuel cycles, radioisotopes, radioactive materials, design, and operation. Chain reaction and fission reactor concepts are presented, plus advanced coverage including neutron diffusion theory. The diffusion equation, Fisk’s Law, and steady state/time-dependent reactor behavior. Numerical and analytical solutions are also covered. The text has full color illustrations throughout, and a wide range of student learning features.

Neutronic Analysis For Nuclear Reactor Systems

Neutronic Analysis For Nuclear Reactor Systems PDF Author: Bahman Zohuri
Publisher: Springer
ISBN: 3319429647
Category : Technology & Engineering
Languages : en
Pages : 560

Get Book Here

Book Description
This book covers the entire spectrum of the science and technology of nuclear reactor systems, from underlying physics, to next generation system applications and beyond. Beginning with neutron physics background and modeling of transport and diffusion, this self-contained learning tool progresses step-by-step to discussions of reactor kinetics, dynamics, and stability that will be invaluable to anyone with a college-level mathematics background wishing to develop an understanding of nuclear power. From fuels and reactions to full systems and plants, the author provides a clear picture of how nuclear energy works, how it can be optimized for safety and efficiency, and why it is important to the future.

Physics of Nuclear Reactors

Physics of Nuclear Reactors PDF Author: P. Mohanakrishnan
Publisher: Elsevier
ISBN: 012822441X
Category : Science
Languages : en
Pages : 786

Get Book Here

Book Description
Physics of Nuclear Reactors presents a comprehensive analysis of nuclear reactor physics. Editors P. Mohanakrishnan, Om Pal Singh, and Kannan Umasankari and a team of expert contributors combine their knowledge to guide the reader through a toolkit of methods for solving transport equations, understanding the physics of reactor design principles, and developing reactor safety strategies. The inclusion of experimental and operational reactor physics makes this a unique reference for those working and researching nuclear power and the fuel cycle in existing power generation sites and experimental facilities. The book also includes radiation physics, shielding techniques and an analysis of shield design, neutron monitoring and core operations. Those involved in the development and operation of nuclear reactors and the fuel cycle will gain a thorough understanding of all elements of nuclear reactor physics, thus enabling them to apply the analysis and solution methods provided to their own work and research. This book looks to future reactors in development and analyzes their status and challenges before providing possible worked-through solutions. Cover image: Kaiga Atomic Power Station Units 1 - 4, Karnataka, India. In 2018, Unit 1 of the Kaiga Station surpassed the world record of continuous operation, at 962 days. Image courtesy of DAE, India. Includes methods for solving neutron transport problems, nuclear cross-section data and solutions of transport theory Dedicates a chapter to reactor safety that covers mitigation, probabilistic safety assessment and uncertainty analysis Covers experimental and operational physics with details on noise analysis and failed fuel detection

Introduction to the Theory of Neutron Diffusion

Introduction to the Theory of Neutron Diffusion PDF Author: K. M. Case
Publisher:
ISBN:
Category : Diffusion
Languages : en
Pages : 192

Get Book Here

Book Description


Handbook of Nuclear Engineering

Handbook of Nuclear Engineering PDF Author: Dan Gabriel Cacuci
Publisher: Springer Science & Business Media
ISBN: 0387981306
Category : Science
Languages : en
Pages : 3701

Get Book Here

Book Description
This is an authoritative compilation of information regarding methods and data used in all phases of nuclear engineering. Addressing nuclear engineers and scientists at all levels, this book provides a condensed reference on nuclear engineering since 1958.

The Physics of Nuclear Reactors

The Physics of Nuclear Reactors PDF Author: Serge Marguet
Publisher: Springer
ISBN: 3319595601
Category : Science
Languages : en
Pages : 1462

Get Book Here

Book Description
This comprehensive volume offers readers a progressive and highly detailed introduction to the complex behavior of neutrons in general, and in the context of nuclear power generation. A compendium and handbook for nuclear engineers, a source of teaching material for academic lecturers as well as a graduate text for advanced students and other non-experts wishing to enter this field, it is based on the author’s teaching and research experience and his recognized expertise in nuclear safety. After recapping a number of points in nuclear physics, placing the theoretical notions in their historical context, the book successively reveals the latest quantitative theories concerning: • The slowing-down of neutrons in matter • The charged particles and electromagnetic rays • The calculation scheme, especially the simplification hypothesis • The concept of criticality based on chain reactions • The theory of homogeneous and heterogeneous reactors • The problem of self-shielding • The theory of the nuclear reflector, a subject largely ignored in literature • The computational methods in transport and diffusion theories Complemented by more than 400 bibliographical references, some of which are commented and annotated, and augmented by an appendix on the history of reactor physics at EDF (Electricité De France), this book is the most comprehensive and up-to-date introduction to and reference resource in neutronics and reactor theory.