Neural Smithing

Neural Smithing PDF Author: Russell Reed
Publisher: MIT Press
ISBN: 0262181908
Category : Computers
Languages : en
Pages : 359

Get Book Here

Book Description
Artificial neural networks are nonlinear mapping systems whose structure is loosely based on principles observed in the nervous systems of humans and animals. The basic idea is that massive systems of simple units linked together in appropriate ways can generate many complex and interesting behaviors. This book focuses on the subset of feedforward artificial neural networks called multilayer perceptrons (MLP). These are the mostly widely used neural networks, with applications as diverse as finance (forecasting), manufacturing (process control), and science (speech and image recognition). This book presents an extensive and practical overview of almost every aspect of MLP methodology, progressing from an initial discussion of what MLPs are and how they might be used to an in-depth examination of technical factors affecting performance. The book can be used as a tool kit by readers interested in applying networks to specific problems, yet it also presents theory and references outlining the last ten years of MLP research.

Neural Smithing

Neural Smithing PDF Author: Russell Reed
Publisher: MIT Press
ISBN: 0262181908
Category : Computers
Languages : en
Pages : 359

Get Book Here

Book Description
Artificial neural networks are nonlinear mapping systems whose structure is loosely based on principles observed in the nervous systems of humans and animals. The basic idea is that massive systems of simple units linked together in appropriate ways can generate many complex and interesting behaviors. This book focuses on the subset of feedforward artificial neural networks called multilayer perceptrons (MLP). These are the mostly widely used neural networks, with applications as diverse as finance (forecasting), manufacturing (process control), and science (speech and image recognition). This book presents an extensive and practical overview of almost every aspect of MLP methodology, progressing from an initial discussion of what MLPs are and how they might be used to an in-depth examination of technical factors affecting performance. The book can be used as a tool kit by readers interested in applying networks to specific problems, yet it also presents theory and references outlining the last ten years of MLP research.

Introduction to Neural and Cognitive Modeling

Introduction to Neural and Cognitive Modeling PDF Author: Daniel S. Levine
Publisher: Psychology Press
ISBN: 1135692246
Category : Psychology
Languages : en
Pages : 573

Get Book Here

Book Description
This thoroughly, thoughtfully revised edition of a very successful textbook makes the principles and the details of neural network modeling accessible to cognitive scientists of all varieties as well as to others interested in these models. Research since the publication of the first edition has been systematically incorporated into a framework of proven pedagogical value. Features of the second edition include: * A new section on spatiotemporal pattern processing * Coverage of ARTMAP networks (the supervised version of adaptive resonance networks) and recurrent back-propagation networks * A vastly expanded section on models of specific brain areas, such as the cerebellum, hippocampus, basal ganglia, and visual and motor cortex * Up-to-date coverage of applications of neural networks in areas such as combinatorial optimization and knowledge representation As in the first edition, the text includes extensive introductions to neuroscience and to differential and difference equations as appendices for students without the requisite background in these areas. As graphically revealed in the flowchart in the front of the book, the text begins with simpler processes and builds up to more complex multilevel functional systems. For more information visit the author's personal Web site at www.uta.edu/psychology/faculty/levine/

Trends and Applications in Constructive Approximation

Trends and Applications in Constructive Approximation PDF Author: Detlef H. Mache
Publisher: Springer Science & Business Media
ISBN: 3764373563
Category : Mathematics
Languages : en
Pages : 300

Get Book Here

Book Description
This volume contains contributions from international experts in the fields of constructive approximation. This area has reached out to encompass the computational and approximation-theoretical aspects of various interesting fields in applied mathematics.

Handbook of Neuroengineering

Handbook of Neuroengineering PDF Author: Nitish V. Thakor
Publisher: Springer Nature
ISBN: 9811655405
Category : Technology & Engineering
Languages : en
Pages : 3686

Get Book Here

Book Description
This Handbook serves as an authoritative reference book in the field of Neuroengineering. Neuroengineering is a very exciting field that is rapidly getting established as core subject matter for research and education. The Neuroengineering field has also produced an impressive array of industry products and clinical applications. It also serves as a reference book for graduate students, research scholars and teachers. Selected sections or a compendium of chapters may be used as “reference book” for a one or two semester graduate course in Biomedical Engineering. Some academicians will construct a “textbook” out of selected sections or chapters. The Handbook is also meant as a state-of-the-art volume for researchers. Due to its comprehensive coverage, researchers in one field covered by a certain section of the Handbook would find other sections valuable sources of cross-reference for information and fertilization of interdisciplinary ideas. Industry researchers as well as clinicians using neurotechnologies will find the Handbook a single source for foundation and state-of-the-art applications in the field of Neuroengineering. Regulatory agencies, entrepreneurs, investors and legal experts can use the Handbook as a reference for their professional work as well.​

Better Deep Learning

Better Deep Learning PDF Author: Jason Brownlee
Publisher: Machine Learning Mastery
ISBN:
Category : Computers
Languages : en
Pages : 575

Get Book Here

Book Description
Deep learning neural networks have become easy to define and fit, but are still hard to configure. Discover exactly how to improve the performance of deep learning neural network models on your predictive modeling projects. With clear explanations, standard Python libraries, and step-by-step tutorial lessons, you’ll discover how to better train your models, reduce overfitting, and make more accurate predictions.

Cognitive Electronic Warfare: An Artificial Intelligence Approach

Cognitive Electronic Warfare: An Artificial Intelligence Approach PDF Author: Karen Haigh
Publisher: Artech House
ISBN: 1630818127
Category : Technology & Engineering
Languages : en
Pages : 261

Get Book Here

Book Description
This comprehensive book gives an overview of how cognitive systems and artificial intelligence (AI) can be used in electronic warfare (EW). Readers will learn how EW systems respond more quickly and effectively to battlefield conditions where sophisticated radars and spectrum congestion put a high priority on EW systems that can characterize and classify novel waveforms, discern intent, and devise and test countermeasures. Specific techniques are covered for optimizing a cognitive EW system as well as evaluating its ability to learn new information in real time. The book presents AI for electronic support (ES), including characterization, classification, patterns of life, and intent recognition. Optimization techniques, including temporal tradeoffs and distributed optimization challenges are also discussed. The issues concerning real-time in-mission machine learning and suggests some approaches to address this important challenge are presented and described. The book covers electronic battle management, data management, and knowledge sharing. Evaluation approaches, including how to show that a machine learning system can learn how to handle novel environments, are also discussed. Written by experts with first-hand experience in AI-based EW, this is the first book on in-mission real-time learning and optimization.

Discovering Knowledge in Data

Discovering Knowledge in Data PDF Author: Daniel T. Larose
Publisher: John Wiley & Sons
ISBN: 0471687537
Category : Computers
Languages : en
Pages : 240

Get Book Here

Book Description
Learn Data Mining by doing data mining Data mining can be revolutionary-but only when it's done right. The powerful black box data mining software now available can produce disastrously misleading results unless applied by a skilled and knowledgeable analyst. Discovering Knowledge in Data: An Introduction to Data Mining provides both the practical experience and the theoretical insight needed to reveal valuable information hidden in large data sets. Employing a "white box" methodology and with real-world case studies, this step-by-step guide walks readers through the various algorithms and statistical structures that underlie the software and presents examples of their operation on actual large data sets. Principal topics include: * Data preprocessing and classification * Exploratory analysis * Decision trees * Neural and Kohonen networks * Hierarchical and k-means clustering * Association rules * Model evaluation techniques Complete with scores of screenshots and diagrams to encourage graphical learning, Discovering Knowledge in Data: An Introduction to Data Mining gives students in Business, Computer Science, and Statistics as well as professionals in the field the power to turn any data warehouse into actionable knowledge. An Instructor's Manual presenting detailed solutions to all the problems in the book is available online.

Long Short-Term Memory Networks With Python

Long Short-Term Memory Networks With Python PDF Author: Jason Brownlee
Publisher: Machine Learning Mastery
ISBN:
Category : Computers
Languages : en
Pages : 245

Get Book Here

Book Description
The Long Short-Term Memory network, or LSTM for short, is a type of recurrent neural network that achieves state-of-the-art results on challenging prediction problems. In this laser-focused Ebook, finally cut through the math, research papers and patchwork descriptions about LSTMs. Using clear explanations, standard Python libraries and step-by-step tutorial lessons you will discover what LSTMs are, and how to develop a suite of LSTM models to get the most out of the method on your sequence prediction problems.

Web Proxy Cache Replacement Strategies

Web Proxy Cache Replacement Strategies PDF Author: Hala ElAarag
Publisher: Springer Science & Business Media
ISBN: 1447148932
Category : Computers
Languages : en
Pages : 109

Get Book Here

Book Description
This work presents a study of cache replacement strategies designed for static web content. Proxy servers can improve performance by caching static web content such as cascading style sheets, java script source files, and large files such as images. This topic is particularly important in wireless ad hoc networks, in which mobile devices act as proxy servers for a group of other mobile devices. Opening chapters present an introduction to web requests and the characteristics of web objects, web proxy servers and Squid, and artificial neural networks. This is followed by a comprehensive review of cache replacement strategies simulated against different performance metrics. The work then describes a novel approach to web proxy cache replacement that uses neural networks for decision making, evaluates its performance and decision structures, and examines its implementation in a real environment, namely, in the Squid proxy server.

Adaptive and Natural Computing Algorithms

Adaptive and Natural Computing Algorithms PDF Author: Ville Kolehmainen
Publisher: Springer
ISBN: 3642049214
Category : Computers
Languages : en
Pages : 645

Get Book Here

Book Description
This book constitutes the thoroughly refereed post-proceedings of the 9th International Conference on Adaptive and Natural Computing Algorithms, ICANNGA 2009, held in Kuopio, Finland, in April 2009. The 63 revised full papers presented were carefully reviewed and selected from a total of 112 submissions. The papers are organized in topical sections on neutral networks, evolutionary computation, learning, soft computing, bioinformatics as well as applications.