Neural Networks for Optimization and Signal Processing

Neural Networks for Optimization and Signal Processing PDF Author: Andrzej Cichocki
Publisher: John Wiley & Sons
ISBN:
Category : Computers
Languages : en
Pages : 578

Get Book Here

Book Description
A topical introduction on the ability of artificial neural networks to not only solve on-line a wide range of optimization problems but also to create new techniques and architectures. Provides in-depth coverage of mathematical modeling along with illustrative computer simulation results.

Neural Networks for Optimization and Signal Processing

Neural Networks for Optimization and Signal Processing PDF Author: Andrzej Cichocki
Publisher: John Wiley & Sons
ISBN:
Category : Computers
Languages : en
Pages : 578

Get Book Here

Book Description
A topical introduction on the ability of artificial neural networks to not only solve on-line a wide range of optimization problems but also to create new techniques and architectures. Provides in-depth coverage of mathematical modeling along with illustrative computer simulation results.

Neural Networks for Intelligent Signal Processing

Neural Networks for Intelligent Signal Processing PDF Author: Anthony Zaknich
Publisher: World Scientific
ISBN: 9812383050
Category : Technology & Engineering
Languages : en
Pages : 510

Get Book Here

Book Description
This book provides a thorough theoretical and practical introduction to the application of neural networks to pattern recognition and intelligent signal processing. It has been tested on students, unfamiliar with neural networks, who were able to pick up enough details to successfully complete their masters or final year undergraduate projects. The text also presents a comprehensive treatment of a class of neural networks called common bandwidth spherical basis function NNs, including the probabilistic NN, the modified probabilistic NN and the general regression NN.

Process Neural Networks

Process Neural Networks PDF Author: Xingui He
Publisher: Springer Science & Business Media
ISBN: 3540737626
Category : Computers
Languages : en
Pages : 240

Get Book Here

Book Description
For the first time, this book sets forth the concept and model for a process neural network. You’ll discover how a process neural network expands the mapping relationship between the input and output of traditional neural networks and greatly enhances the expression capability of artificial neural networks. Detailed illustrations help you visualize information processing flow and the mapping relationship between inputs and outputs.

Neural Networks for Optimization and Signal Processing

Neural Networks for Optimization and Signal Processing PDF Author: Andrzej Cichocki
Publisher:
ISBN: 9783519064442
Category : Mathematical optimization
Languages : en
Pages : 526

Get Book Here

Book Description


Fuzzy Systems and Soft Computing in Nuclear Engineering

Fuzzy Systems and Soft Computing in Nuclear Engineering PDF Author: Da Ruan
Publisher: Springer Science & Business Media
ISBN: 9783790812510
Category : Business & Economics
Languages : en
Pages : 506

Get Book Here

Book Description
This book is an organized edited collection of twenty-one contributed chapters covering nuclear engineering applications of fuzzy systems, neural networks, genetic algorithms and other soft computing techniques. All chapters are either updated review or original contributions by leading researchers written exclusively for this volume. The volume highlights the advantages of applying fuzzy systems and soft computing in nuclear engineering, which can be viewed as complementary to traditional methods. As a result, fuzzy sets and soft computing provide a powerful tool for solving intricate problems pertaining in nuclear engineering. Each chapter of the book is self-contained and also indicates the future research direction on this topic of applications of fuzzy systems and soft computing in nuclear engineering.

Handbook of Neural Network Signal Processing

Handbook of Neural Network Signal Processing PDF Author: Yu Hen Hu
Publisher: CRC Press
ISBN: 1420038613
Category : Technology & Engineering
Languages : en
Pages : 402

Get Book Here

Book Description
The use of neural networks is permeating every area of signal processing. They can provide powerful means for solving many problems, especially in nonlinear, real-time, adaptive, and blind signal processing. The Handbook of Neural Network Signal Processing brings together applications that were previously scattered among various publications to provide an up-to-date, detailed treatment of the subject from an engineering point of view. The authors cover basic principles, modeling, algorithms, architectures, implementation procedures, and well-designed simulation examples of audio, video, speech, communication, geophysical, sonar, radar, medical, and many other signals. The subject of neural networks and their application to signal processing is constantly improving. You need a handy reference that will inform you of current applications in this new area. The Handbook of Neural Network Signal Processing provides this much needed service for all engineers and scientists in the field.

Advances in Neural Networks – ISNN 2020

Advances in Neural Networks – ISNN 2020 PDF Author: Min Han
Publisher: Springer Nature
ISBN: 3030642216
Category : Computers
Languages : en
Pages : 289

Get Book Here

Book Description
This volume LNCS 12557 constitutes the refereed proceedings of the 17th International Symposium on Neural Networks, ISNN 2020, held in Cairo, Egypt, in December 2020. The 24 papers presented in the two volumes were carefully reviewed and selected from 39 submissions. The papers were organized in topical sections named: optimization algorithms; neurodynamics, complex systems, and chaos; supervised/unsupervised/reinforcement learning/deep learning; models, methods and algorithms; and signal, image and video processing.

Applied Neural Networks for Signal Processing

Applied Neural Networks for Signal Processing PDF Author: Fa-Long Luo
Publisher: Cambridge University Press
ISBN: 9780521563918
Category : Technology & Engineering
Languages : en
Pages : 381

Get Book Here

Book Description
The use of neural networks in signal processing is becoming increasingly widespread, with applications in many areas. Applied Neural Networks for Signal Processing is the first book to provide a comprehensive introduction to this broad field. It begins by covering the basic principles and models of neural networks in signal processing. The authors then discuss a number of powerful algorithms and architectures for a range of important problems, and describe practical implementation procedures. A key feature of the book is that many carefully designed simulation examples are included to help guide the reader in the development of systems for new applications. The book will be an invaluable reference for scientists and engineers working in communications, control or any other field related to signal processing. It can also be used as a textbook for graduate courses in electrical engineering and computer science.

Geometry of Deep Learning

Geometry of Deep Learning PDF Author: Jong Chul Ye
Publisher: Springer Nature
ISBN: 9811660468
Category : Mathematics
Languages : en
Pages : 338

Get Book Here

Book Description
The focus of this book is on providing students with insights into geometry that can help them understand deep learning from a unified perspective. Rather than describing deep learning as an implementation technique, as is usually the case in many existing deep learning books, here, deep learning is explained as an ultimate form of signal processing techniques that can be imagined. To support this claim, an overview of classical kernel machine learning approaches is presented, and their advantages and limitations are explained. Following a detailed explanation of the basic building blocks of deep neural networks from a biological and algorithmic point of view, the latest tools such as attention, normalization, Transformer, BERT, GPT-3, and others are described. Here, too, the focus is on the fact that in these heuristic approaches, there is an important, beautiful geometric structure behind the intuition that enables a systematic understanding. A unified geometric analysis to understand the working mechanism of deep learning from high-dimensional geometry is offered. Then, different forms of generative models like GAN, VAE, normalizing flows, optimal transport, and so on are described from a unified geometric perspective, showing that they actually come from statistical distance-minimization problems. Because this book contains up-to-date information from both a practical and theoretical point of view, it can be used as an advanced deep learning textbook in universities or as a reference source for researchers interested in acquiring the latest deep learning algorithms and their underlying principles. In addition, the book has been prepared for a codeshare course for both engineering and mathematics students, thus much of the content is interdisciplinary and will appeal to students from both disciplines.

Genetic Algorithms for Control and Signal Processing

Genetic Algorithms for Control and Signal Processing PDF Author: Kim F. Man
Publisher: Springer Science & Business Media
ISBN: 1447109554
Category : Technology & Engineering
Languages : en
Pages : 226

Get Book Here

Book Description
The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. The rapid development of control technology impacts all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies, . . . , new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series offers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. The emerging technologies in control include fuzzy logic, intelligent control, neural networks and hardware developments like micro-electro-mechanical systems and autonomous vehicles. This volume describes the biological background, basic construction and application of the emerging technology of Genetic Algorithms. Dr Kim Man and his colleagues have written a book which is both a primer introducing the basic concepts and a research text which describes some of the more advanced applications of the genetic algorithmic method. The applications described are especially useful since they indicate the power of the GA method in solving a wide range of problems. These sections are also instructive in showing how the mechanics of the GA solutions are obtained thereby acting as a template for similar types of problems. The volume is a very welcome contribution to the Advances in Industrial Control Series. M. J. Grimble and M. A.