Neural Fuzzy Control Systems with Structure and Parameter Learning

Neural Fuzzy Control Systems with Structure and Parameter Learning PDF Author: C. T. Lin
Publisher: World Scientific
ISBN: 9789810216139
Category : Computers
Languages : en
Pages : 150

Get Book Here

Book Description
A general neural-network-based connectionist model, called Fuzzy Neural Network (FNN), is proposed in this book for the realization of a fuzzy logic control and decision system. The FNN is a feedforward multi-layered network which integrates the basic elements and functions of a traditional fuzzy logic controller into a connectionist structure which has distributed learning abilities.In order to set up this proposed FNN, the author recommends two complementary structure/parameter learning algorithms: a two-phase hybrid learning algorithm and an on-line supervised structure/parameter learning algorithm.Both of these learning algorithms require exact supervised training data for learning. In some real-time applications, exact training data may be expensive or even impossible to get. To solve this reinforcement learning problem for real-world applications, a Reinforcement Fuzzy Neural Network (RFNN) is further proposed. Computer simulation examples are presented to illustrate the performance and applicability of the proposed FNN, RFNN and their associated learning algorithms for various applications.

Neural Fuzzy Control Systems with Structure and Parameter Learning

Neural Fuzzy Control Systems with Structure and Parameter Learning PDF Author: C. T. Lin
Publisher: World Scientific
ISBN: 9789810216139
Category : Computers
Languages : en
Pages : 150

Get Book Here

Book Description
A general neural-network-based connectionist model, called Fuzzy Neural Network (FNN), is proposed in this book for the realization of a fuzzy logic control and decision system. The FNN is a feedforward multi-layered network which integrates the basic elements and functions of a traditional fuzzy logic controller into a connectionist structure which has distributed learning abilities.In order to set up this proposed FNN, the author recommends two complementary structure/parameter learning algorithms: a two-phase hybrid learning algorithm and an on-line supervised structure/parameter learning algorithm.Both of these learning algorithms require exact supervised training data for learning. In some real-time applications, exact training data may be expensive or even impossible to get. To solve this reinforcement learning problem for real-world applications, a Reinforcement Fuzzy Neural Network (RFNN) is further proposed. Computer simulation examples are presented to illustrate the performance and applicability of the proposed FNN, RFNN and their associated learning algorithms for various applications.

Neural Fuzzy Systems

Neural Fuzzy Systems PDF Author: Ching Tai Lin
Publisher: Prentice Hall
ISBN:
Category : Computers
Languages : en
Pages : 824

Get Book Here

Book Description
Neural Fuzzy Systems provides a comprehensive, up-to-date introduction to the basic theories of fuzzy systems and neural networks, as well as an exploration of how these two fields can be integrated to create Neural-Fuzzy Systems. It includes Matlab software, with a Neural Network Toolkit, and a Fuzzy System Toolkit.

Neuro-Fuzzy Architectures and Hybrid Learning

Neuro-Fuzzy Architectures and Hybrid Learning PDF Author: Danuta Rutkowska
Publisher: Physica
ISBN: 379081802X
Category : Computers
Languages : en
Pages : 292

Get Book Here

Book Description
The advent of the computer age has set in motion a profound shift in our perception of science -its structure, its aims and its evolution. Traditionally, the principal domains of science were, and are, considered to be mathe matics, physics, chemistry, biology, astronomy and related disciplines. But today, and to an increasing extent, scientific progress is being driven by a quest for machine intelligence - for systems which possess a high MIQ (Machine IQ) and can perform a wide variety of physical and mental tasks with minimal human intervention. The role model for intelligent systems is the human mind. The influ ence of the human mind as a role model is clearly visible in the methodolo gies which have emerged, mainly during the past two decades, for the con ception, design and utilization of intelligent systems. At the center of these methodologies are fuzzy logic (FL); neurocomputing (NC); evolutionary computing (EC); probabilistic computing (PC); chaotic computing (CC); and machine learning (ML). Collectively, these methodologies constitute what is called soft computing (SC). In this perspective, soft computing is basically a coalition of methodologies which collectively provide a body of concepts and techniques for automation of reasoning and decision-making in an environment of imprecision, uncertainty and partial truth.

Fuzzy Neural Networks for Real Time Control Applications

Fuzzy Neural Networks for Real Time Control Applications PDF Author: Erdal Kayacan
Publisher: Butterworth-Heinemann
ISBN: 0128027037
Category : Mathematics
Languages : en
Pages : 266

Get Book Here

Book Description
AN INDISPENSABLE RESOURCE FOR ALL THOSE WHO DESIGN AND IMPLEMENT TYPE-1 AND TYPE-2 FUZZY NEURAL NETWORKS IN REAL TIME SYSTEMS Delve into the type-2 fuzzy logic systems and become engrossed in the parameter update algorithms for type-1 and type-2 fuzzy neural networks and their stability analysis with this book! Not only does this book stand apart from others in its focus but also in its application-based presentation style. Prepared in a way that can be easily understood by those who are experienced and inexperienced in this field. Readers can benefit from the computer source codes for both identification and control purposes which are given at the end of the book. A clear and an in-depth examination has been made of all the necessary mathematical foundations, type-1 and type-2 fuzzy neural network structures and their learning algorithms as well as their stability analysis. You will find that each chapter is devoted to a different learning algorithm for the tuning of type-1 and type-2 fuzzy neural networks; some of which are: • Gradient descent • Levenberg-Marquardt • Extended Kalman filter In addition to the aforementioned conventional learning methods above, number of novel sliding mode control theory-based learning algorithms, which are simpler and have closed forms, and their stability analysis have been proposed. Furthermore, hybrid methods consisting of particle swarm optimization and sliding mode control theory-based algorithms have also been introduced. The potential readers of this book are expected to be the undergraduate and graduate students, engineers, mathematicians and computer scientists. Not only can this book be used as a reference source for a scientist who is interested in fuzzy neural networks and their real-time implementations but also as a course book of fuzzy neural networks or artificial intelligence in master or doctorate university studies. We hope that this book will serve its main purpose successfully. - Parameter update algorithms for type-1 and type-2 fuzzy neural networks and their stability analysis - Contains algorithms that are applicable to real time systems - Introduces fast and simple adaptation rules for type-1 and type-2 fuzzy neural networks - Number of case studies both in identification and control - Provides MATLAB® codes for some algorithms in the book

Expert Systems

Expert Systems PDF Author: Cornelius T. Leondes
Publisher: Elsevier
ISBN: 0080531458
Category : Computers
Languages : en
Pages : 2125

Get Book Here

Book Description
This six-volume set presents cutting-edge advances and applications of expert systems. Because expert systems combine the expertise of engineers, computer scientists, and computer programmers, each group will benefit from buying this important reference work. An "expert system" is a knowledge-based computer system that emulates the decision-making ability of a human expert. The primary role of the expert system is to perform appropriate functions under the close supervision of the human, whose work is supported by that expert system. In the reverse, this same expert system can monitor and double check the human in the performance of a task. Human-computer interaction in our highly complex world requires the development of a wide array of expert systems. Expert systems techniques and applications are presented for a diverse array of topics including Experimental design and decision support The integration of machine learning with knowledge acquisition for the design of expert systems Process planning in design and manufacturing systems and process control applications Knowledge discovery in large-scale knowledge bases Robotic systems Geograhphic information systems Image analysis, recognition and interpretation Cellular automata methods for pattern recognition Real-time fault tolerant control systems CAD-based vision systems in pattern matching processes Financial systems Agricultural applications Medical diagnosis

Intelligent and Fuzzy Systems

Intelligent and Fuzzy Systems PDF Author: Cengiz Kahraman
Publisher: Springer Nature
ISBN: 3031671929
Category :
Languages : en
Pages : 753

Get Book Here

Book Description


Fuzzy Logic and its Applications to Engineering, Information Sciences, and Intelligent Systems

Fuzzy Logic and its Applications to Engineering, Information Sciences, and Intelligent Systems PDF Author: Zeungnam Bien
Publisher: Springer Science & Business Media
ISBN: 9400901259
Category : Mathematics
Languages : en
Pages : 472

Get Book Here

Book Description
Fuzzy technology has emerged as one of the most exciting new concepts available. Fuzzy Logic and its Applications... covers a wide range of the theory and applications of fuzzy logic and related systems, including industrial applications of fuzzy technology, implementing human intelligence in machines and systems. There are four main themes: intelligent systems, engineering, mathematical foundations, and information sciences. Both academics and the technical community will learn how and why fuzzy logic is appreciated in the conceptual, design and manufacturing stages of intelligent systems, gaining an improved understanding of the basic science and the foundations of human reasoning.

Mechatronics And Manufacturing Technologies - Proceedings Of The International Conference (Mmt 2016)

Mechatronics And Manufacturing Technologies - Proceedings Of The International Conference (Mmt 2016) PDF Author: Poki Chen
Publisher: World Scientific
ISBN: 9813222360
Category : Technology & Engineering
Languages : en
Pages : 750

Get Book Here

Book Description
Held in Wuhan of China from August 20-21, 2016, the 2016 International Conference on Mechatronics and Manufacturing Technologies (MMT2016) provides an excellent international academic forum for all the researchers and practitioners to share resources, exchange opinions and inspire studying.The conference enjoys a wide spread participation among all over the universities and research institutes. It provides a broad overview of the latest research results on related fields and also a significant platform for academic connection and exchange.MMT2016 proceedings collects together 96 articles, after peer-review, to report on state-of-art developments of mechanical engineering based on originality, significance and clarity for the purpose of the Conference.

Intelligent Systems

Intelligent Systems PDF Author: Cornelius T. Leondes
Publisher: CRC Press
ISBN: 1420040812
Category : Technology & Engineering
Languages : en
Pages : 2208

Get Book Here

Book Description
Intelligent systems, or artificial intelligence technologies, are playing an increasing role in areas ranging from medicine to the major manufacturing industries to financial markets. The consequences of flawed artificial intelligence systems are equally wide ranging and can be seen, for example, in the programmed trading-driven stock market crash of October 19, 1987. Intelligent Systems: Technology and Applications, Six Volume Set connects theory with proven practical applications to provide broad, multidisciplinary coverage in a single resource. In these volumes, international experts present case-study examples of successful practical techniques and solutions for diverse applications ranging from robotic systems to speech and signal processing, database management, and manufacturing.

Evolving Intelligent Systems

Evolving Intelligent Systems PDF Author: Plamen Angelov
Publisher: John Wiley & Sons
ISBN: 9780470569955
Category : Computers
Languages : en
Pages : 464

Get Book Here

Book Description
From theory to techniques, the first all-in-one resource for EIS There is a clear demand in advanced process industries, defense, and Internet and communication (VoIP) applications for intelligent yet adaptive/evolving systems. Evolving Intelligent Systems is the first self- contained volume that covers this newly established concept in its entirety, from a systematic methodology to case studies to industrial applications. Featuring chapters written by leading world experts, it addresses the progress, trends, and major achievements in this emerging research field, with a strong emphasis on the balance between novel theoretical results and solutions and practical real-life applications. Explains the following fundamental approaches for developing evolving intelligent systems (EIS): the Hierarchical Prioritized Structure the Participatory Learning Paradigm the Evolving Takagi-Sugeno fuzzy systems (eTS+) the evolving clustering algorithm that stems from the well-known Gustafson-Kessel offline clustering algorithm Emphasizes the importance and increased interest in online processing of data streams Outlines the general strategy of using the fuzzy dynamic clustering as a foundation for evolvable information granulation Presents a methodology for developing robust and interpretable evolving fuzzy rule-based systems Introduces an integrated approach to incremental (real-time) feature extraction and classification Proposes a study on the stability of evolving neuro-fuzzy recurrent networks Details methodologies for evolving clustering and classification Reveals different applications of EIS to address real problems in areas of: evolving inferential sensors in chemical and petrochemical industry learning and recognition in robotics Features downloadable software resources Evolving Intelligent Systems is the one-stop reference guide for both theoretical and practical issues for computer scientists, engineers, researchers, applied mathematicians, machine learning and data mining experts, graduate students, and professionals.