Neural Control of Locomotion

Neural Control of Locomotion PDF Author: Robert Herman
Publisher: Springer
ISBN: 1475709641
Category : Science
Languages : en
Pages : 814

Get Book

Book Description

Neural Control of Locomotion

Neural Control of Locomotion PDF Author: Robert Herman
Publisher: Springer
ISBN: 1475709641
Category : Science
Languages : en
Pages : 814

Get Book

Book Description


The Neural Control of Movement

The Neural Control of Movement PDF Author: Patrick J. Whelan
Publisher: Academic Press
ISBN: 0128164778
Category : Medical
Languages : en
Pages : 484

Get Book

Book Description
From speech to breathing to overt movement contractions of muscles are the only way other than sweating whereby we literally make a mark on the world. Locomotion is an essential part of this equation and exciting new developments are shedding light on the mechanisms underlying how this important behavior occurs. The Neural Control of Movement discusses these developments across a variety of species including man. The editors focus on highlighting the utility of different models from invertebrates to vertebrates. Each chapter discusses how new approaches in neuroscience are being used to dissect and control neural networks. An area of emphasis is on vertebrate motor networks and particularly the spinal cord. The spinal cord is unique because it has seen the use of genetic tools allowing the dissection of networks for over ten years. This book provides practical details on model systems, approaches, and analysis approaches related to movement control. This book is written for neuroscientists interested in movement control. Provides practice details on model systems, approaches, and analysis approaches related to movement control Discusses how recent advances like optogenetics and chemogenetics affect the need for model systems to be modified (or not) to work for studies of movement and motor control Written for neuroscientists interested in movement control, especially movement disorders like Parkinson's, MS, spinal cord injury, and stroke

The Neural Control of Movement

The Neural Control of Movement PDF Author: Patrick J. Whelan
Publisher: Academic Press
ISBN: 0128172754
Category : Medical
Languages : en
Pages : 486

Get Book

Book Description
From speech to breathing to overt movement contractions of muscles are the only way other than sweating whereby we literally make a mark on the world. Locomotion is an essential part of this equation and exciting new developments are shedding light on the mechanisms underlying how this important behavior occurs. The Neural Control of Movement discusses these developments across a variety of species including man. The editors focus on highlighting the utility of different models from invertebrates to vertebrates. Each chapter discusses how new approaches in neuroscience are being used to dissect and control neural networks. An area of emphasis is on vertebrate motor networks and particularly the spinal cord. The spinal cord is unique because it has seen the use of genetic tools allowing the dissection of networks for over ten years. This book provides practical details on model systems, approaches, and analysis approaches related to movement control. This book is written for neuroscientists interested in movement control. Provides practice details on model systems, approaches, and analysis approaches related to movement control Discusses how recent advances like optogenetics and chemogenetics affect the need for model systems to be modified (or not) to work for studies of movement and motor control Written for neuroscientists interested in movement control, especially movement disorders like Parkinson’s, MS, spinal cord injury, and stroke

Biomechanics and Neural Control of Posture and Movement

Biomechanics and Neural Control of Posture and Movement PDF Author: Jack M. Winters
Publisher: Springer Science & Business Media
ISBN: 1461221048
Category : Science
Languages : en
Pages : 690

Get Book

Book Description
Most routine motor tasks are complex, involving load transmission through out the body, intricate balance, and eye-head-shoulder-hand-torso-leg coor dination. The quest toward understanding how we perform such tasks with skill and grace, often in the presence of unpredictable perturbations, has a long history. This book arose from the Ninth Engineering Foundation Con ference on Biomechanics and Neural Control of Movement, held in Deer Creek, Ohio, in June 1996. This unique conference, which has met every 2 to 4 years since the late 1960s, is well known for its informal format that promotes high-level, up-to-date discussions on the key issues in the field. The intent is to capture the high quality ofthe knowledge and discourse that is an integral part of this conference series. The book is organized into ten sections. Section I provides a brief intro duction to the terminology and conceptual foundations of the field of move ment science; it is intended primarily for students. All but two of the re maining nine sections share a common format: (l) a designated section editor; (2) an introductory didactic chapter, solicited from recognized lead ers; and (3) three to six state-of-the-art perspective chapters. Some per spective chapters are followed by commentaries by selected experts that provide balance and insight. Section VI is the largest section, and it con sists of nine perspective chapters without commentaries.

Neuronal Control of Locomotion

Neuronal Control of Locomotion PDF Author: Grigoriĭ Nikolaevich Orlovskiĭ
Publisher: Oxford Neuroscience
ISBN: 9780198524052
Category : Medical
Languages : en
Pages : 322

Get Book

Book Description
What does the swimming leech have to do with the running human? The ability to move actively in space is essential to members of the animal kingdom, and the evolution of the nervous system relates to a large extent to the evolution of locomotion. The extreme importance of locomotion hasstimulated many studies of the neural mechanisms underlying locomotion across a range of species. For the first time, a group of three leading neurobiologists have undertaken a comparative study of these mechanisms. Neuronal Control of Locomotion: From Mollusc to Man describes how the brains invery diverse and evolutionarily removed species control the animal's locomotion. In doing so, the authors reveal unifying principles of brain function, making it essential reading for students and researchers in neurobiology generally, and motor control in particular. "In my opinion, the authorshave produced a masterful and highly readable exposition on the neural control of locomotion. It is timely and relevant to avant- garde neuroscience. It will have a major impact on the field, and is sure to be referenced well into the second half of the next century." Douglas Stuart, Universityof Arizona College of Medicine

Neural Control of Movement

Neural Control of Movement PDF Author: W.R. Ferrell
Publisher: Springer Science & Business Media
ISBN: 1461519853
Category : Science
Languages : en
Pages : 295

Get Book

Book Description
Presented with a choice of evils, most would prefer to be blinded rather than to be unable to move, immobilized in the late stages of Parkinson's disease. Yet in everyday life, as in Neuroscience, vision holds the centre of the stage. The conscious psyche watches a private TV show all day long, while the motor system is left to get on with it "out of sight and out of mind. " Motor skills are worshipped at all levels of society, whether in golf, tennis, soccer, athletics or in musical performance; meanwhile the subconscious machinery is ignored. But scientifically there is steady advance on a wide front, as we are reminded here, from the reversal of the reflexes of the stick insects to the site of motor learning in the human cerebral cortex. As in the rest of Physiology, evolution has preserved that which has already worked well; thus general principles can often be best discerned in lower animals. No one scientist can be personally involved at all levels of analysis, but especially for the motor system a narrow view is doomed from the outset. Interaction is all; the spinal cord has surrendered its autonomy to the brain, but the brain can only control the limbs by talking to the spinal cord in a language that it can understand, determined by its pre-existing circuitry; and both receive a continuous stream of feedback from the periphery.

The Neural Control of Locomotion: Current Knowledge and Future Research

The Neural Control of Locomotion: Current Knowledge and Future Research PDF Author: Monika Pötter-Nerger
Publisher: Frontiers Media SA
ISBN: 2889765687
Category : Science
Languages : en
Pages : 218

Get Book

Book Description


Peripheral and Spinal Mechanisms in the Neural Control of Movement

Peripheral and Spinal Mechanisms in the Neural Control of Movement PDF Author: M.D. Binder
Publisher: Elsevier
ISBN: 9780080862484
Category : Science
Languages : en
Pages : 479

Get Book

Book Description
In the last decade, we have witnessed a striking maturation of our understanding of how neurons in the spinal cord control muscular activity and movement. Paradoxically, a host of new findings have revealed an unexpected versatility in the behavior of these well-studied neural elements and circuits. In this volume, the world's leading experts review the current state of our knowledge of motor control, outline their latest results and developments, and delineate the seminal unresolved questions in this vibrant field of research. The volume begins with a commentary and overview of our current understanding of the peripheral and spinal basis of motor control. The remainder of the volume is divided into seven sections, each focused on a different problem. The first chapter in each section provides some historical review and presages the experimental findings and hypotheses that are discussed in subsequent chapters. Topics include the biomechanics of neuromuscular systems, the properties of motoneurons and the muscle units they control, spinal interneurons, pattern generating circuits, locomotion, descending control of spinal circuits, comparative physiology of motor systems, and motor systems neurophysiology studied in man. The book serves as a unique reference volume and should be essential reading for anyone interested in motor systems. Moreover, the volume's comprehensive coverage of a wide range of topics make it an effective textbook for graduate level courses in motor control neurobiology, kinesiology, physical therapy, and rehabilitation medicine.

Neurobiology of Motor Control

Neurobiology of Motor Control PDF Author: Scott L. Hooper
Publisher: John Wiley & Sons
ISBN: 1118873343
Category : Medical
Languages : en
Pages : 512

Get Book

Book Description
A multi-disciplinary look at the current state of knowledge regarding motor control and movement—from molecular biology to robotics The last two decades have seen a dramatic increase in the number of sophisticated tools and methodologies for exploring motor control and movement. Multi-unit recordings, molecular neurogenetics, computer simulation, and new scientific approaches for studying how muscles and body anatomy transform motor neuron activity into movement have helped revolutionize the field. Neurobiology of Motor Control brings together contributions from an interdisciplinary group of experts to provide a review of the current state of knowledge about the initiation and execution of movement, as well as the latest methods and tools for investigating them. The book ranges from the findings of basic scientists studying model organisms such as mollusks and Drosophila, to biomedical researchers investigating vertebrate motor production to neuroengineers working to develop robotic and smart prostheses technologies. Following foundational chapters on current molecular biological techniques, neuronal ensemble recording, and computer simulation, it explores a broad range of related topics, including the evolution of motor systems, directed targeted movements, plasticity and learning, and robotics. Explores motor control and movement in a wide variety of organisms, from simple invertebrates to human beings Offers concise summaries of motor control systems across a variety of animals and movement types Explores an array of tools and methodologies, including electrophysiological techniques, neurogenic and molecular techniques, large ensemble recordings, and computational methods Considers unresolved questions and how current scientific advances may be used to solve them going forward Written specifically to encourage interdisciplinary understanding and collaboration, and offering the most wide-ranging, timely, and comprehensive look at the science of motor control and movement currently available, Neurobiology of Motor Control is a must-read for all who study movement production and the neurobiological basis of movement—from molecular biologists to roboticists.

Neuromechanical Modeling of Posture and Locomotion

Neuromechanical Modeling of Posture and Locomotion PDF Author: Boris I. Prilutsky
Publisher: Springer
ISBN: 1493932675
Category : Medical
Languages : en
Pages : 368

Get Book

Book Description
Neuromechanics is a new, quickly growing field of neuroscience research that merges neurophysiology, biomechanics and motor control and aims at understanding living systems and their elements through interactions between their neural and mechanical dynamic properties. Although research in Neuromechanics is not limited by computational approaches, neuromechanical modeling is a powerful tool that allows for integration of massive knowledge gained in the past several decades in organization of motion related brain and spinal cord activity, various body sensors and reflex pathways, muscle mechanical and physiological properties and detailed quantitative morphology of musculoskeletal systems. Recent work in neuromechanical modeling has demonstrated advantages of such an integrative approach and led to discoveries of new emergent properties of neuromechanical systems. Neuromechanical Modeling of Posture and Locomotion will cover a wide range of topics from theoretical studies linking the organization of reflex pathways and central pattern generating circuits with morphology and mechanics of the musculoskeletal system (Burkholder; Nichols; Shevtsova et al.) to detailed neuromechanical models of postural and locomotor control (Bunderson; Edwards, Marking et al., Ting). Furthermore, uniquely diverse modeling approaches will be presented in the book including a theoretical dynamic analysis of locomotor phase transitions (Spardy and Rubin), a hybrid computational modeling that allows for in vivo interactions between parts of a living organism and a computer model (Edwards et al.), a physical neuromechanical model of the human locomotor system (Lewis), and others.