Neural Computation in the Context of Upstream Dynamics in the Retina

Neural Computation in the Context of Upstream Dynamics in the Retina PDF Author: Philip R. Mardoum
Publisher:
ISBN:
Category :
Languages : en
Pages : 83

Get Book Here

Book Description
To understand neural circuit function, one would like to understand individual neurons' computation in the context of their physiological inputs. But these inputs are themselves subject to complex dynamics, and we rarely have tools to experimentally control synaptic inputs under physiological conditions that preserve their temporal features. Primary sensory structures present an exception because primary receptor neurons can be controlled experimentally under physiological conditions. Here, I present work carried out in the retina, where signaling by photoreceptors (the primary receptor neurons in vision) has been characterized in detail and can be controlled with light, and computation in downstream circuitry can therefore be investigated in the context of physiological input from photoreceptors. I first present a hybrid biophysical-statistical model of retinal output that disentangles the computational contributions of photoreceptors from those of other circuit elements and successfully predicts retinal ganglion cell responses to stimuli with dynamically changing statistics. Second, I present an investigation of synaptic specializations that could mediate parallel processing of input from different photoreceptor types within individual post-synaptic neurons.

Neural Computation in the Context of Upstream Dynamics in the Retina

Neural Computation in the Context of Upstream Dynamics in the Retina PDF Author: Philip R. Mardoum
Publisher:
ISBN:
Category :
Languages : en
Pages : 83

Get Book Here

Book Description
To understand neural circuit function, one would like to understand individual neurons' computation in the context of their physiological inputs. But these inputs are themselves subject to complex dynamics, and we rarely have tools to experimentally control synaptic inputs under physiological conditions that preserve their temporal features. Primary sensory structures present an exception because primary receptor neurons can be controlled experimentally under physiological conditions. Here, I present work carried out in the retina, where signaling by photoreceptors (the primary receptor neurons in vision) has been characterized in detail and can be controlled with light, and computation in downstream circuitry can therefore be investigated in the context of physiological input from photoreceptors. I first present a hybrid biophysical-statistical model of retinal output that disentangles the computational contributions of photoreceptors from those of other circuit elements and successfully predicts retinal ganglion cell responses to stimuli with dynamically changing statistics. Second, I present an investigation of synaptic specializations that could mediate parallel processing of input from different photoreceptor types within individual post-synaptic neurons.

Retinal Computation

Retinal Computation PDF Author: Greg Schwartz
Publisher: Elsevier
ISBN: 0128198966
Category : Medical
Languages : en
Pages : 340

Get Book Here

Book Description
Retinal Computation summarizes current progress in defining the computations performed by the retina, also including the synaptic and circuit mechanisms by which they are implemented. Each chapter focuses on a single retinal computation that includes the definition of the computation and its neuroethological purpose, along with the available information on its known and unknown neuronal mechanisms. All chapters contain end-of-chapter questions associated with a landmark paper, as well as programming exercises. This book is written for advanced graduate students, researchers and ophthalmologists interested in vision science or computational neuroscience of sensory systems. While the typical textbook's description of the retina is akin to a biological video camera, the real retina is actually the world's most complex image processing machine. As part of the central nervous system, the retina converts patterns of light at the input into a rich palette of representations at the output. The parallel streams of information in the optic nerve encode features like color, contrast, orientation of edges, and direction of motion. Image processing in the retina is undeniably complex, but as one of the most accessible parts of the central nervous system, the tools to study retinal circuits with unprecedented precision are up to the task. This book provides a practical guide and resource about the current state of the field of retinal computation. Editorial Reviews: ".this book is also a unique overview of our current understanding of the why and the how of retinal computation and there is something here for anyone with a grounding in vision science who recognises that there is more to what the retina does than. meets the eye." -- Prof Steven Dakin, New Zealand Optics, May 28, 2022. "I want to commend Dr. Schwartz for assembling this incredible resource and strongly recommend Retinal Computation to everyone who is a student of vision. The vast majority of modern topics in retina are covered yet in a fashion that is clear, and concise. The book covers the cellular and circuit basis of computations ranging from those covered by most textbooks, such as center-surround receptive field or direction selectivity , to those you probably do not associated with the retina such as "motion anticipation" and "threat detection". Each chapter is self-contained, meaning you can easily "pick and choose" the topics. A quick perusal of the chapter titles are almost certainly going to pique your interest. For example, you may know that the retina has single photon sensitivity but do you know "How many photons does it take to create a percept"? (Chapter 1). How does the retina encode texture (i.e. spatial fluctuations within the receptive field)? (Chapter 7). Is object motion sensitivity related to Direction selectivity? (Chapter 12). The list goes on. This book will also serve as a great resource for those teaching advanced undergraduate or graduate level vision courses for students with backgrounds in experimental or computational vision science. Each chapter contains what Dr. Schwartz's considers a "landmark paper" in the field, with a set of questions that can be used as a guide for reading these papers. And finally he includes programming exercises that can be easily implemented in Matlab to address basic concepts introduced in the chapter. The instructions are detailed so that even those new to Matlab will be able to implement these exercises these straightforward. It is this combination - textbook chapter + primary literature + quantitative exercises that will solidify these concepts. There are many vision science topics not covered in the book. For example, there is little on retinal disease or development. But these limitations are far outweighed by where the book succeeds. The vast majority of the book is written by Dr. Schwartz, giving it a uniformity that is welcome. Despite tackling quite modern questions where there is ongoing progress, Dr.Schwartz has extracted what are key findings that are likely to stand the test of time. And finally, it is really interesting! For those who think that the retina is "solved", think again. Retinal computations is a fantastic way for all circuit neuroscientist to learn how much computations can be achieved with very few synapses." -- Marla B. Feller, Ph. D., Paul Licht Distinguished Professor in Biological Sciences, Division of Neurobiology, Department of Molecular and Cell Biology & Helen Wills Neuroscience Institute University of California, Berkeley "This fantastic new textbook from a rising star in the field clearly and thoroughly updates our picture of what the retina computes. It is detailed enough for senior researchers but also pedagogical, providing a go-to reference for students. The illustrations within the text and for the chapter headings are both beautiful and informative." -- Stephanie E. Palmer, Ph.D., Associate Professor, Department of Organismal Biology and Anatomy, Department of Physics, University of Chicago "This book summarizes the impressive recent progress in understanding how visual computations are performed by retinal circuits. The book is an important resource not only for retinal experts, but more generally for anyone seeking to explain how the brain works at the level of neural circuits. Greg Schwartz and his co-authors have made a major contribution to the field." -- Sebastian Seung, Anthony B. Evnin '62 Professor, Neuroscience Institute and Computer Science Dept., Princeton University "This is a wonderful book from a true expert in the retina field. It is a fantastic resource for researchers, lecturers, and students alike. The book nicely covers the many facets of how the retina processes the visual input that enters the eye. Despite the richness in material, the presentation manages to stay accessible and always connects back to fundamental questions of visual processing. Each chapter by itself is a great entry point into a particular area of how the neural network of the retina deals with a specific set of visual challenges. I have thoroughly enjoyed this wonderful overview of retinal computation, served on a silver platter, and I will use the book both as background material for research and as a resource for teaching. I particularly like the sets of exercises that conclude each chapter." -- Dr. Tim Gollisch, Professor for Sensory Processing in the Retina, Department of Ophthalmology, University Medical Center Göttingen

Process Dynamics and Control

Process Dynamics and Control PDF Author: Dale E. Seborg
Publisher: John Wiley & Sons
ISBN: 0470128674
Category : Technology & Engineering
Languages : en
Pages : 356

Get Book Here

Book Description
This third edition provides chemical engineers with process control techniques that are used in practice while offering detailed mathematical analysis. Numerous examples and simulations are used to illustrate key theoretical concepts. New exercises are integrated throughout several chapters to reinforce concepts. Up-to-date information is also included on real-time optimization and model predictive control to highlight the significant impact these techniques have on industrial practice. And chemical engineers will find two new chapters on biosystems control to gain the latest perspective in the field.

Neural Organization

Neural Organization PDF Author: Michael A. Arbib
Publisher: MIT Press
ISBN: 9780262011594
Category : Medical
Languages : en
Pages : 442

Get Book Here

Book Description
In Neural Organization, Arbib, Erdi, and Szentagothai integrate structural, functional, and dynamical approaches to the interaction of brain models and neurobiologcal experiments. Both structure-based "bottom-up" and function- based "top-down" models offer coherent concepts by which to evaluate the experimental data. The goal of this book is to point out the advantages of a multidisciplinary, multistrategied approach to the brain.Part I of Neural Organization provides a detailed introduction to each of the three areas of structure, function, and dynamics. Structure refers to the anatomical aspects of the brain and the relations between different brain regions. Function refers to skills and behaviors, which are explained by means of functional schemas and biologically based neural networks. Dynamics refers to the use of a mathematical framework to analyze the temporal change of neural activities and synaptic connectivities that underlie brain development and plasticity--in terms of both detailed single-cell models and large-scale network models.In part II, the authors show how their systematic approach can be used to analyze specific parts of the nervous system--the olfactory system, hippocampus, thalamus, cerebral cortex, cerebellum, and basal ganglia--as well as to integrate data from the study of brain regions, functional models, and the dynamics of neural networks. In conclusion, they offer a plan for the use of their methods in the development of cognitive neuroscience."

Emergent Brain Dynamics

Emergent Brain Dynamics PDF Author: April A. Benasich
Publisher: MIT Press
ISBN: 0262545721
Category : Science
Languages : en
Pages : 339

Get Book Here

Book Description
Experts explore the maturation of nonlinear brain dynamics from a developmental perspective and consider the relationship of neurodevelopmental disorders to early disruption in dynamic coordination. This volume in the Strüngmann Forum Reports series explores the complex mechanisms that accompany the dynamic processes by which the brain evolves and matures. Integrating perspectives from multiple disciplines, the book identifies knowledge gaps and proposes innovative ways forward for this emerging area of cross-disciplinary study. The contributors examine maturation of nonlinear brain dynamics across systems from a developmental perspective and relate these organizing networks to the establishment of normative cognition and pathology seen in many neurodevelopmental disorders. The book looks at key mechanistic questions, including: What role does dynamic coordination play in the establishment and maintenance of brain networks and structural and functional connectivity? How are local and global functional networks assembled and transformed over normative development? To what degree do oscillatory patterns vary across development? What is the impact of critical periods, and which factors initiate and terminate such periods? It also explores the potential of new technologies and techniques to enhance understanding of normative development and to enable early identification and remediation of neurodevelopmental and neuropsychiatric disorders that may result from early disruption in dynamic coordination. Contributors Sylvain Baillet, Yehezkel Ben-Ari, April A. Benasich, Olivier Bertrand, Gyorgy Buzsáki, Alain Chédotal, Sam M. Doesburg, Gordin Fishell, Adriana Galván, Jennifer N. Gelinas, Jay Giedd, Pierre Gressens, Ileana L. Hanganu-Opatz, Rowshanak Hashemiyoon, Takao K. Hensch, Suzana Herculano-Houzel, Mark Hübener, Mark, Matthias Kaschube, Michael S. Kobor, Bryan Kolb, Thorsten Kolling, Jean-Philippe Lachaux, Ulman Lindenberger, Heiko J. Luhmann, Hannah Monyer, Sarah R. Moore, Charles A. Nelson III, Tomáš Paus, Patrick L. Purdon, Pasko Rakic, Urs Ribary, Akira Sawa, Terrence J. Sejnowski, Wolf Singer, Cheryl L. Sisk, Nicholas C. Spitzer, Michael P. Stryker, Migranka Sur, Peter J. Uhlhaas

Biologically Inspired Computer Vision

Biologically Inspired Computer Vision PDF Author: Gabriel Cristobal
Publisher: John Wiley & Sons
ISBN: 3527412646
Category : Technology & Engineering
Languages : en
Pages : 482

Get Book Here

Book Description
As the state-of-the-art imaging technologies became more and more advanced, yielding scientific data at unprecedented detail and volume, the need to process and interpret all the data has made image processing and computer vision increasingly important. Sources of data that have to be routinely dealt with today's applications include video transmission, wireless communication, automatic fingerprint processing, massive databanks, non-weary and accurate automatic airport screening, robust night vision, just to name a few. Multidisciplinary inputs from other disciplines such as physics, computational neuroscience, cognitive science, mathematics, and biology will have a fundamental impact in the progress of imaging and vision sciences. One of the advantages of the study of biological organisms is to devise very different type of computational paradigms by implementing a neural network with a high degree of local connectivity. This is a comprehensive and rigorous reference in the area of biologically motivated vision sensors. The study of biologically visual systems can be considered as a two way avenue. On the one hand, biological organisms can provide a source of inspiration for new computational efficient and robust vision models and on the other hand machine vision approaches can provide new insights for understanding biological visual systems. Along the different chapters, this book covers a wide range of topics from fundamental to more specialized topics, including visual analysis based on a computational level, hardware implementation, and the design of new more advanced vision sensors. The last two sections of the book provide an overview of a few representative applications and current state of the art of the research in this area. This makes it a valuable book for graduate, Master, PhD students and also researchers in the field.

Dynamics in Action

Dynamics in Action PDF Author: Alicia Juarrero
Publisher: MIT Press
ISBN: 9780262600477
Category : Psychology
Languages : en
Pages : 306

Get Book Here

Book Description
What is the difference between a wink and a blink? The answer is important not only to philosophers of mind, for significant moral and legal consequences rest on the distinction between voluntary and involuntary behavior. However, "action theory"—the branch of philosophy that has traditionally articulated the boundaries between action and non-action, and between voluntary and involuntary behavior—has been unable to account for the difference. Alicia Juarrero argues that a mistaken, 350-year-old model of cause and explanation—one that takes all causes to be of the push-pull, efficient cause sort, and all explanation to be prooflike—underlies contemporary theories of action. Juarrero then proposes a new framework for conceptualizing causes based on complex adaptive systems. Thinking of causes as dynamical constraints makes bottom-up and top-down causal relations, including those involving intentional causes, suddenly tractable. A different logic for explaining actions—as historical narrative, not inference—follows if one adopts this novel approach to long-standing questions of action and responsibility.

Information Theory of Choice-reaction Times

Information Theory of Choice-reaction Times PDF Author: Donald Richard John Laming
Publisher:
ISBN:
Category : Choice (Psychology).
Languages : en
Pages : 194

Get Book Here

Book Description


Rhythms of the Brain

Rhythms of the Brain PDF Author: G. Buzsáki
Publisher: Oxford University Press
ISBN: 0199828237
Category : Medical
Languages : en
Pages : 465

Get Book Here

Book Description
Studies of mechanisms in the brain that allow complicated things to happen in a coordinated fashion have produced some of the most spectacular discoveries in neuroscience. This book provides eloquent support for the idea that spontaneous neuron activity, far from being mere noise, is actually the source of our cognitive abilities. It takes a fresh look at the coevolution of structure and function in the mammalian brain, illustrating how self-emerged oscillatory timing is the brain's fundamental organizer of neuronal information. The small-world-like connectivity of the cerebral cortex allows for global computation on multiple spatial and temporal scales. The perpetual interactions among the multiple network oscillators keep cortical systems in a highly sensitive "metastable" state and provide energy-efficient synchronizing mechanisms via weak links. In a sequence of "cycles," György Buzsáki guides the reader from the physics of oscillations through neuronal assembly organization to complex cognitive processing and memory storage. His clear, fluid writing-accessible to any reader with some scientific knowledge-is supplemented by extensive footnotes and references that make it just as gratifying and instructive a read for the specialist. The coherent view of a single author who has been at the forefront of research in this exciting field, this volume is essential reading for anyone interested in our rapidly evolving understanding of the brain.

Epigenetics: Development and Disease

Epigenetics: Development and Disease PDF Author: Tapas Kumar Kundu
Publisher: Springer Science & Business Media
ISBN: 9400745257
Category : Medical
Languages : en
Pages : 698

Get Book Here

Book Description
Epigenetics fine-tunes the life processes dictated by DNA sequences, but also kick-starts pathophysiological processes including diabetes, AIDS and cancer. This volume tracks the latest research on epigenetics, including work on new-generation therapeutics.