Author: Xuan Guang
Publisher: Springer Science & Business Media
ISBN: 1493905880
Category : Computers
Languages : en
Pages : 110
Book Description
There are two main approaches in the theory of network error correction coding. In this SpringerBrief, the authors summarize some of the most important contributions following the classic approach, which represents messages by sequences similar to algebraic coding, and also briefly discuss the main results following the other approach, that uses the theory of rank metric codes for network error correction of representing messages by subspaces. This book starts by establishing the basic linear network error correction (LNEC) model and then characterizes two equivalent descriptions. Distances and weights are defined in order to characterize the discrepancy of these two vectors and to measure the seriousness of errors. Similar to classical error-correcting codes, the authors also apply the minimum distance decoding principle to LNEC codes at each sink node, but use distinct distances. For this decoding principle, it is shown that the minimum distance of a LNEC code at each sink node can fully characterize its error-detecting, error-correcting and erasure-error-correcting capabilities with respect to the sink node. In addition, some important and useful coding bounds in classical coding theory are generalized to linear network error correction coding, including the Hamming bound, the Gilbert-Varshamov bound and the Singleton bound. Several constructive algorithms of LNEC codes are presented, particularly for LNEC MDS codes, along with an analysis of their performance. Random linear network error correction coding is feasible for noncoherent networks with errors. Its performance is investigated by estimating upper bounds on some failure probabilities by analyzing the information transmission and error correction. Finally, the basic theory of subspace codes is introduced including the encoding and decoding principle as well as the channel model, the bounds on subspace codes, code construction and decoding algorithms.
Linear Network Error Correction Coding
Error-Control Coding for Data Networks
Author: Irving S. Reed
Publisher: Springer Science & Business Media
ISBN: 146155005X
Category : Computers
Languages : en
Pages : 554
Book Description
The purpose of Error-Control Coding for Data Networks is to provide an accessible and comprehensive overview of the fundamental techniques and practical applications of the error-control coding needed by students and engineers. An additional purpose of the book is to acquaint the reader with the analytical techniques used to design an error-control coding system for many new applications in data networks. Error~control coding is a field in which elegant theory was motivated by practical problems so that it often leads to important useful advances. Claude Shannon in 1948 proved the existence of error-control codes that, under suitable conditions and at rates less than channel capacity, would transmit error-free information for all practical applications. The first practical binary codes were introduced by Richard Hamming and Marcel Golay from which the drama and excitement have infused researchers and engineers in digital communication and error-control coding for more than fifty years. Nowadays, error-control codes are being used in almost all modem digital electronic systems and data networks. Not only is coding equipment being implemented to increase the energy and bandwidth efficiency of communication systems, but coding also provides innovative solutions to many related data-networking problems.
Publisher: Springer Science & Business Media
ISBN: 146155005X
Category : Computers
Languages : en
Pages : 554
Book Description
The purpose of Error-Control Coding for Data Networks is to provide an accessible and comprehensive overview of the fundamental techniques and practical applications of the error-control coding needed by students and engineers. An additional purpose of the book is to acquaint the reader with the analytical techniques used to design an error-control coding system for many new applications in data networks. Error~control coding is a field in which elegant theory was motivated by practical problems so that it often leads to important useful advances. Claude Shannon in 1948 proved the existence of error-control codes that, under suitable conditions and at rates less than channel capacity, would transmit error-free information for all practical applications. The first practical binary codes were introduced by Richard Hamming and Marcel Golay from which the drama and excitement have infused researchers and engineers in digital communication and error-control coding for more than fifty years. Nowadays, error-control codes are being used in almost all modem digital electronic systems and data networks. Not only is coding equipment being implemented to increase the energy and bandwidth efficiency of communication systems, but coding also provides innovative solutions to many related data-networking problems.
Error Correction Coding
Author: Todd K. Moon
Publisher: John Wiley & Sons
ISBN: 0471648000
Category : Computers
Languages : en
Pages : 800
Book Description
An unparalleled learning tool and guide to error correction coding Error correction coding techniques allow the detection and correction of errors occurring during the transmission of data in digital communication systems. These techniques are nearly universally employed in modern communication systems, and are thus an important component of the modern information economy. Error Correction Coding: Mathematical Methods and Algorithms provides a comprehensive introduction to both the theoretical and practical aspects of error correction coding, with a presentation suitable for a wide variety of audiences, including graduate students in electrical engineering, mathematics, or computer science. The pedagogy is arranged so that the mathematical concepts are presented incrementally, followed immediately by applications to coding. A large number of exercises expand and deepen students' understanding. A unique feature of the book is a set of programming laboratories, supplemented with over 250 programs and functions on an associated Web site, which provides hands-on experience and a better understanding of the material. These laboratories lead students through the implementation and evaluation of Hamming codes, CRC codes, BCH and R-S codes, convolutional codes, turbo codes, and LDPC codes. This text offers both "classical" coding theory-such as Hamming, BCH, Reed-Solomon, Reed-Muller, and convolutional codes-as well as modern codes and decoding methods, including turbo codes, LDPC codes, repeat-accumulate codes, space time codes, factor graphs, soft-decision decoding, Guruswami-Sudan decoding, EXIT charts, and iterative decoding. Theoretical complements on performance and bounds are presented. Coding is also put into its communications and information theoretic context and connections are drawn to public key cryptosystems. Ideal as a classroom resource and a professional reference, this thorough guide will benefit electrical and computer engineers, mathematicians, students, researchers, and scientists.
Publisher: John Wiley & Sons
ISBN: 0471648000
Category : Computers
Languages : en
Pages : 800
Book Description
An unparalleled learning tool and guide to error correction coding Error correction coding techniques allow the detection and correction of errors occurring during the transmission of data in digital communication systems. These techniques are nearly universally employed in modern communication systems, and are thus an important component of the modern information economy. Error Correction Coding: Mathematical Methods and Algorithms provides a comprehensive introduction to both the theoretical and practical aspects of error correction coding, with a presentation suitable for a wide variety of audiences, including graduate students in electrical engineering, mathematics, or computer science. The pedagogy is arranged so that the mathematical concepts are presented incrementally, followed immediately by applications to coding. A large number of exercises expand and deepen students' understanding. A unique feature of the book is a set of programming laboratories, supplemented with over 250 programs and functions on an associated Web site, which provides hands-on experience and a better understanding of the material. These laboratories lead students through the implementation and evaluation of Hamming codes, CRC codes, BCH and R-S codes, convolutional codes, turbo codes, and LDPC codes. This text offers both "classical" coding theory-such as Hamming, BCH, Reed-Solomon, Reed-Muller, and convolutional codes-as well as modern codes and decoding methods, including turbo codes, LDPC codes, repeat-accumulate codes, space time codes, factor graphs, soft-decision decoding, Guruswami-Sudan decoding, EXIT charts, and iterative decoding. Theoretical complements on performance and bounds are presented. Coding is also put into its communications and information theoretic context and connections are drawn to public key cryptosystems. Ideal as a classroom resource and a professional reference, this thorough guide will benefit electrical and computer engineers, mathematicians, students, researchers, and scientists.
Network Coding Theory
Author: Raymond W. Yeung
Publisher: Now Publishers Inc
ISBN: 1933019247
Category : Computers
Languages : en
Pages : 156
Book Description
Provides a tutorial on the basics of network coding theory. Divided into two parts, this book presents a unified framework for understanding the basic notions and fundamental results in network coding. It is aimed at students, researchers and practitioners working in networking research.
Publisher: Now Publishers Inc
ISBN: 1933019247
Category : Computers
Languages : en
Pages : 156
Book Description
Provides a tutorial on the basics of network coding theory. Divided into two parts, this book presents a unified framework for understanding the basic notions and fundamental results in network coding. It is aimed at students, researchers and practitioners working in networking research.
Network Coding
Author: Khaldoun Al Agha
Publisher: John Wiley & Sons
ISBN: 1118563107
Category : Technology & Engineering
Languages : en
Pages : 171
Book Description
Network coding, a relatively new area of research, has evolved from the theoretical level to become a tool used to optimize the performance of communication networks – wired, cellular, ad hoc, etc. The idea consists of mixing “packets” of data together when routing them from source to destination. Since network coding increases the network performance, it becomes a tool to enhance the existing protocols and algorithms in a network or for applications such as peer-to-peer and TCP. This book delivers an understanding of network coding and provides a set of studies showing the improvements in security, capacity and performance of fixed and mobile networks. This is increasingly topical as industry is increasingly becoming more reliant upon and applying network coding in multiple applications. Many cases where network coding is used in routing, physical layer, security, flooding, error correction, optimization and relaying are given – all of which are key areas of interest. Network Coding is the ideal resource for university students studying coding, and researchers and practitioners in sectors of all industries where digital communication and its application needs to be correctly understood and implemented. Contents 1. Network Coding: From Theory to Practice, Youghourta Benfattoum, Steven Martin and Khaldoun Al Agha. 2. Fountain Codes and Network Coding for WSNs, Anya Apavatjrut, Claire Goursaud, Katia Jaffrès-Runser and Jean-Marie Gorce. 3. Switched Code for Ad Hoc Networks: Optimizing the Diffusion by Using Network Coding, Nour Kadi and Khaldoun Al Agha. 4. Security by Network Coding, Katia Jaffrès-Runser and Cédric Lauradoux. 5. Security for Network Coding, Marine Minier, Yuanyuan Zhang and Wassim Znaïdi. 6. Random Network Coding and Matroids, Maximilien Gadouleau. 7. Joint Network-Channel Coding for the Semi-Orthogonal MARC: Theoretical Bounds and Practical Design, Atoosa Hatefi, Antoine O. Berthet and Raphael Visoz. 8. Robust Network Coding, Lana Iwaza, Marco Di Renzo and Michel Kieffer. 9. Flow Models and Optimization for Network Coding, Eric Gourdin and Jeremiah Edwards.
Publisher: John Wiley & Sons
ISBN: 1118563107
Category : Technology & Engineering
Languages : en
Pages : 171
Book Description
Network coding, a relatively new area of research, has evolved from the theoretical level to become a tool used to optimize the performance of communication networks – wired, cellular, ad hoc, etc. The idea consists of mixing “packets” of data together when routing them from source to destination. Since network coding increases the network performance, it becomes a tool to enhance the existing protocols and algorithms in a network or for applications such as peer-to-peer and TCP. This book delivers an understanding of network coding and provides a set of studies showing the improvements in security, capacity and performance of fixed and mobile networks. This is increasingly topical as industry is increasingly becoming more reliant upon and applying network coding in multiple applications. Many cases where network coding is used in routing, physical layer, security, flooding, error correction, optimization and relaying are given – all of which are key areas of interest. Network Coding is the ideal resource for university students studying coding, and researchers and practitioners in sectors of all industries where digital communication and its application needs to be correctly understood and implemented. Contents 1. Network Coding: From Theory to Practice, Youghourta Benfattoum, Steven Martin and Khaldoun Al Agha. 2. Fountain Codes and Network Coding for WSNs, Anya Apavatjrut, Claire Goursaud, Katia Jaffrès-Runser and Jean-Marie Gorce. 3. Switched Code for Ad Hoc Networks: Optimizing the Diffusion by Using Network Coding, Nour Kadi and Khaldoun Al Agha. 4. Security by Network Coding, Katia Jaffrès-Runser and Cédric Lauradoux. 5. Security for Network Coding, Marine Minier, Yuanyuan Zhang and Wassim Znaïdi. 6. Random Network Coding and Matroids, Maximilien Gadouleau. 7. Joint Network-Channel Coding for the Semi-Orthogonal MARC: Theoretical Bounds and Practical Design, Atoosa Hatefi, Antoine O. Berthet and Raphael Visoz. 8. Robust Network Coding, Lana Iwaza, Marco Di Renzo and Michel Kieffer. 9. Flow Models and Optimization for Network Coding, Eric Gourdin and Jeremiah Edwards.
Network Coding
Author: Tracey Ho
Publisher: Cambridge University Press
ISBN: 9780521873109
Category : Technology & Engineering
Languages : en
Pages : 184
Book Description
Network coding promises to significantly impact the way communications networks are designed, operated, and understood. The first book to present a unified and intuitive overview of the theory, applications, challenges, and future directions of this emerging field, this is a must-have resource for those working in wireline or wireless networking. *Uses an engineering approach - explains the ideas and practical techniques *Covers mathematical underpinnings, practical algorithms, code selection, security, and network management *Discusses key topics of inter-session (non-multicast) network coding, lossy networks, lossless networks, and subgraph-selection algorithms Starting with basic concepts, models, and theory, then covering a core subset of results with full proofs, Ho and Lun provide an authoritative introduction to network coding that supplies both the background to support research and the practical considerations for designing coded networks. This is an essential resource for graduate students and researchers in electronic and computer engineering and for practitioners in the communications industry.
Publisher: Cambridge University Press
ISBN: 9780521873109
Category : Technology & Engineering
Languages : en
Pages : 184
Book Description
Network coding promises to significantly impact the way communications networks are designed, operated, and understood. The first book to present a unified and intuitive overview of the theory, applications, challenges, and future directions of this emerging field, this is a must-have resource for those working in wireline or wireless networking. *Uses an engineering approach - explains the ideas and practical techniques *Covers mathematical underpinnings, practical algorithms, code selection, security, and network management *Discusses key topics of inter-session (non-multicast) network coding, lossy networks, lossless networks, and subgraph-selection algorithms Starting with basic concepts, models, and theory, then covering a core subset of results with full proofs, Ho and Lun provide an authoritative introduction to network coding that supplies both the background to support research and the practical considerations for designing coded networks. This is an essential resource for graduate students and researchers in electronic and computer engineering and for practitioners in the communications industry.
Iterative Error Correction
Author: Sarah J. Johnson
Publisher: Cambridge University Press
ISBN: 0521871484
Category : Computers
Languages : en
Pages : 356
Book Description
Presents all of the key ideas needed to understand, design, implement and analyse iterative-based error correction schemes.
Publisher: Cambridge University Press
ISBN: 0521871484
Category : Computers
Languages : en
Pages : 356
Book Description
Presents all of the key ideas needed to understand, design, implement and analyse iterative-based error correction schemes.
Information Theory and Network Coding
Author: Raymond W. Yeung
Publisher: Springer Science & Business Media
ISBN: 0387792333
Category : Computers
Languages : en
Pages : 592
Book Description
This book is an evolution from my book A First Course in Information Theory published in 2002 when network coding was still at its infancy. The last few years have witnessed the rapid development of network coding into a research ?eld of its own in information science. With its root in infor- tion theory, network coding has not only brought about a paradigm shift in network communications at large, but also had signi?cant in?uence on such speci?c research ?elds as coding theory, networking, switching, wireless c- munications,distributeddatastorage,cryptography,andoptimizationtheory. While new applications of network coding keep emerging, the fundamental - sults that lay the foundation of the subject are more or less mature. One of the main goals of this book therefore is to present these results in a unifying and coherent manner. While the previous book focused only on information theory for discrete random variables, the current book contains two new chapters on information theory for continuous random variables, namely the chapter on di?erential entropy and the chapter on continuous-valued channels. With these topics included, the book becomes more comprehensive and is more suitable to be used as a textbook for a course in an electrical engineering department.
Publisher: Springer Science & Business Media
ISBN: 0387792333
Category : Computers
Languages : en
Pages : 592
Book Description
This book is an evolution from my book A First Course in Information Theory published in 2002 when network coding was still at its infancy. The last few years have witnessed the rapid development of network coding into a research ?eld of its own in information science. With its root in infor- tion theory, network coding has not only brought about a paradigm shift in network communications at large, but also had signi?cant in?uence on such speci?c research ?elds as coding theory, networking, switching, wireless c- munications,distributeddatastorage,cryptography,andoptimizationtheory. While new applications of network coding keep emerging, the fundamental - sults that lay the foundation of the subject are more or less mature. One of the main goals of this book therefore is to present these results in a unifying and coherent manner. While the previous book focused only on information theory for discrete random variables, the current book contains two new chapters on information theory for continuous random variables, namely the chapter on di?erential entropy and the chapter on continuous-valued channels. With these topics included, the book becomes more comprehensive and is more suitable to be used as a textbook for a course in an electrical engineering department.
Network Coding
Author: Muriel Medard
Publisher: Academic Press
ISBN: 0123809185
Category : Computers
Languages : en
Pages : 353
Book Description
Introduction -- Network coding Fundamentals -- Harnessing Network Coding in Wireless Systems -- Network Coding for Content Distribution and Multimedia Streaming in Peer-to-Peer Networks -- Network Coding in the Real World -- Network Coding and User Cooperation for Streaming and Download Services in LTE Networks -- CONCERTO: Experiences with a Real-World MANET System Based on Network Coding -- Secure Network Coding: Bounds and Algorithms for Secret and Reliable Communications -- Network Coding and Data Compression -- Scaling Laws with Network Coding -- Network Coding in Disruption Tolerant Networks.
Publisher: Academic Press
ISBN: 0123809185
Category : Computers
Languages : en
Pages : 353
Book Description
Introduction -- Network coding Fundamentals -- Harnessing Network Coding in Wireless Systems -- Network Coding for Content Distribution and Multimedia Streaming in Peer-to-Peer Networks -- Network Coding in the Real World -- Network Coding and User Cooperation for Streaming and Download Services in LTE Networks -- CONCERTO: Experiences with a Real-World MANET System Based on Network Coding -- Secure Network Coding: Bounds and Algorithms for Secret and Reliable Communications -- Network Coding and Data Compression -- Scaling Laws with Network Coding -- Network Coding in Disruption Tolerant Networks.
General Theory of Information Transfer and Combinatorics
Author: Rudolf Ahlswede
Publisher: Springer Science & Business Media
ISBN: 3540462449
Category : Computers
Languages : en
Pages : 1138
Book Description
This book collects 63 revised, full-papers contributed to a research project on the "General Theory of Information Transfer and Combinatorics" that was hosted from 2001-2004 at the Center for Interdisciplinary Research (ZIF) of Bielefeld University and several incorporated meetings. Topics covered include probabilistic models, cryptology, pseudo random sequences, quantum models, pattern discovery, language evolution, and network coding.
Publisher: Springer Science & Business Media
ISBN: 3540462449
Category : Computers
Languages : en
Pages : 1138
Book Description
This book collects 63 revised, full-papers contributed to a research project on the "General Theory of Information Transfer and Combinatorics" that was hosted from 2001-2004 at the Center for Interdisciplinary Research (ZIF) of Bielefeld University and several incorporated meetings. Topics covered include probabilistic models, cryptology, pseudo random sequences, quantum models, pattern discovery, language evolution, and network coding.