Network Algorithms, Data Mining, and Applications

Network Algorithms, Data Mining, and Applications PDF Author: Ilya Bychkov
Publisher: Springer Nature
ISBN: 3030371573
Category : Mathematics
Languages : en
Pages : 251

Get Book Here

Book Description
This proceedings presents the result of the 8th International Conference in Network Analysis, held at the Higher School of Economics, Moscow, in May 2018. The conference brought together scientists, engineers, and researchers from academia, industry, and government. Contributions in this book focus on the development of network algorithms for data mining and its applications. Researchers and students in mathematics, economics, statistics, computer science, and engineering find this collection a valuable resource filled with the latest research in network analysis. Computational aspects and applications of large-scale networks in market models, neural networks, social networks, power transmission grids, maximum clique problem, telecommunication networks, and complexity graphs are included with new tools for efficient network analysis of large-scale networks. Machine learning techniques in network settings including community detection, clustering, and biclustering algorithms are presented with applications to social network analysis.

Network Algorithms, Data Mining, and Applications

Network Algorithms, Data Mining, and Applications PDF Author: Ilya Bychkov
Publisher: Springer Nature
ISBN: 3030371573
Category : Mathematics
Languages : en
Pages : 251

Get Book Here

Book Description
This proceedings presents the result of the 8th International Conference in Network Analysis, held at the Higher School of Economics, Moscow, in May 2018. The conference brought together scientists, engineers, and researchers from academia, industry, and government. Contributions in this book focus on the development of network algorithms for data mining and its applications. Researchers and students in mathematics, economics, statistics, computer science, and engineering find this collection a valuable resource filled with the latest research in network analysis. Computational aspects and applications of large-scale networks in market models, neural networks, social networks, power transmission grids, maximum clique problem, telecommunication networks, and complexity graphs are included with new tools for efficient network analysis of large-scale networks. Machine learning techniques in network settings including community detection, clustering, and biclustering algorithms are presented with applications to social network analysis.

Contrast Data Mining

Contrast Data Mining PDF Author: Guozhu Dong
Publisher: CRC Press
ISBN: 1439854335
Category : Business & Economics
Languages : en
Pages : 428

Get Book Here

Book Description
A Fruitful Field for Researching Data Mining Methodology and for Solving Real-Life ProblemsContrast Data Mining: Concepts, Algorithms, and Applications collects recent results from this specialized area of data mining that have previously been scattered in the literature, making them more accessible to researchers and developers in data mining and

Link Mining: Models, Algorithms, and Applications

Link Mining: Models, Algorithms, and Applications PDF Author: Philip S. Yu
Publisher: Springer Science & Business Media
ISBN: 1441965157
Category : Science
Languages : en
Pages : 580

Get Book Here

Book Description
This book offers detailed surveys and systematic discussion of models, algorithms and applications for link mining, focusing on theory and technique, and related applications: text mining, social network analysis, collaborative filtering and bioinformatics.

Data Clustering

Data Clustering PDF Author: Charu C. Aggarwal
Publisher: CRC Press
ISBN: 1466558229
Category : Business & Economics
Languages : en
Pages : 648

Get Book Here

Book Description
Research on the problem of clustering tends to be fragmented across the pattern recognition, database, data mining, and machine learning communities. Addressing this problem in a unified way, Data Clustering: Algorithms and Applications provides complete coverage of the entire area of clustering, from basic methods to more refined and complex data clustering approaches. It pays special attention to recent issues in graphs, social networks, and other domains. The book focuses on three primary aspects of data clustering: Methods, describing key techniques commonly used for clustering, such as feature selection, agglomerative clustering, partitional clustering, density-based clustering, probabilistic clustering, grid-based clustering, spectral clustering, and nonnegative matrix factorization Domains, covering methods used for different domains of data, such as categorical data, text data, multimedia data, graph data, biological data, stream data, uncertain data, time series clustering, high-dimensional clustering, and big data Variations and Insights, discussing important variations of the clustering process, such as semisupervised clustering, interactive clustering, multiview clustering, cluster ensembles, and cluster validation In this book, top researchers from around the world explore the characteristics of clustering problems in a variety of application areas. They also explain how to glean detailed insight from the clustering process—including how to verify the quality of the underlying clusters—through supervision, human intervention, or the automated generation of alternative clusters.

Data Mining and Machine Learning

Data Mining and Machine Learning PDF Author: Mohammed J. Zaki
Publisher: Cambridge University Press
ISBN: 1108473989
Category : Business & Economics
Languages : en
Pages : 779

Get Book Here

Book Description
New to the second edition of this advanced text are several chapters on regression, including neural networks and deep learning.

Mining of Massive Datasets

Mining of Massive Datasets PDF Author: Jure Leskovec
Publisher: Cambridge University Press
ISBN: 1107077230
Category : Computers
Languages : en
Pages : 480

Get Book Here

Book Description
Now in its second edition, this book focuses on practical algorithms for mining data from even the largest datasets.

Data Mining and Analysis

Data Mining and Analysis PDF Author: Mohammed J. Zaki
Publisher: Cambridge University Press
ISBN: 0521766338
Category : Computers
Languages : en
Pages : 607

Get Book Here

Book Description
A comprehensive overview of data mining from an algorithmic perspective, integrating related concepts from machine learning and statistics.

Data Mining Applications with R

Data Mining Applications with R PDF Author: Yanchang Zhao
Publisher: Academic Press
ISBN: 0124115209
Category : Computers
Languages : en
Pages : 493

Get Book Here

Book Description
Data Mining Applications with R is a great resource for researchers and professionals to understand the wide use of R, a free software environment for statistical computing and graphics, in solving different problems in industry. R is widely used in leveraging data mining techniques across many different industries, including government, finance, insurance, medicine, scientific research and more. This book presents 15 different real-world case studies illustrating various techniques in rapidly growing areas. It is an ideal companion for data mining researchers in academia and industry looking for ways to turn this versatile software into a powerful analytic tool. R code, Data and color figures for the book are provided at the RDataMining.com website. - Helps data miners to learn to use R in their specific area of work and see how R can apply in different industries - Presents various case studies in real-world applications, which will help readers to apply the techniques in their work - Provides code examples and sample data for readers to easily learn the techniques by running the code by themselves

Handbook of Statistical Analysis and Data Mining Applications

Handbook of Statistical Analysis and Data Mining Applications PDF Author: Ken Yale
Publisher: Elsevier
ISBN: 0124166458
Category : Mathematics
Languages : en
Pages : 824

Get Book Here

Book Description
Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications

Optimization Based Data Mining: Theory and Applications

Optimization Based Data Mining: Theory and Applications PDF Author: Yong Shi
Publisher: Springer Science & Business Media
ISBN: 0857295047
Category : Computers
Languages : en
Pages : 314

Get Book Here

Book Description
Optimization techniques have been widely adopted to implement various data mining algorithms. In addition to well-known Support Vector Machines (SVMs) (which are based on quadratic programming), different versions of Multiple Criteria Programming (MCP) have been extensively used in data separations. Since optimization based data mining methods differ from statistics, decision tree induction, and neural networks, their theoretical inspiration has attracted many researchers who are interested in algorithm development of data mining. Optimization based Data Mining: Theory and Applications, mainly focuses on MCP and SVM especially their recent theoretical progress and real-life applications in various fields. These include finance, web services, bio-informatics and petroleum engineering, which has triggered the interest of practitioners who look for new methods to improve the results of data mining for knowledge discovery. Most of the material in this book is directly from the research and application activities that the authors’ research group has conducted over the last ten years. Aimed at practitioners and graduates who have a fundamental knowledge in data mining, it demonstrates the basic concepts and foundations on how to use optimization techniques to deal with data mining problems.