Negative Capacitance Field Effect Transistors

Negative Capacitance Field Effect Transistors PDF Author: Young Suh Song
Publisher: CRC Press
ISBN: 1000933326
Category : Technology & Engineering
Languages : en
Pages : 149

Get Book Here

Book Description
This book aims to provide information in the ever-growing field of low-power electronic devices and their applications in portable devices, wireless communication, sensor, and circuit domains. Negative Capacitance Field Effect Transistors: Physics, Design, Modeling and Applications discusses low-power semiconductor technology and addresses state-of-the-art techniques such as negative capacitance field effect transistors and tunnel field effect transistors. The book is split into three parts. The first part discusses the foundations of low-power electronics, including the challenges and demands and concepts such as subthreshold swing. The second part discusses the basic operations of negative capacitance field effect transistors (NCFETs) and tunnel field effect transistors (TFETs). The third part covers industrial applications including cryogenics and biosensors with NC-FET. This book is designed to be a one-stop guide for students and academic researchers, to understand recent trends in the IT industry and semiconductor industry. It will also be of interest to researchers in the field of nanodevices such as NC-FET, FinFET, tunnel FET, and device–circuit codesign.

Negative Capacitance Field Effect Transistors

Negative Capacitance Field Effect Transistors PDF Author: Young Suh Song
Publisher: CRC Press
ISBN: 1000933326
Category : Technology & Engineering
Languages : en
Pages : 149

Get Book Here

Book Description
This book aims to provide information in the ever-growing field of low-power electronic devices and their applications in portable devices, wireless communication, sensor, and circuit domains. Negative Capacitance Field Effect Transistors: Physics, Design, Modeling and Applications discusses low-power semiconductor technology and addresses state-of-the-art techniques such as negative capacitance field effect transistors and tunnel field effect transistors. The book is split into three parts. The first part discusses the foundations of low-power electronics, including the challenges and demands and concepts such as subthreshold swing. The second part discusses the basic operations of negative capacitance field effect transistors (NCFETs) and tunnel field effect transistors (TFETs). The third part covers industrial applications including cryogenics and biosensors with NC-FET. This book is designed to be a one-stop guide for students and academic researchers, to understand recent trends in the IT industry and semiconductor industry. It will also be of interest to researchers in the field of nanodevices such as NC-FET, FinFET, tunnel FET, and device–circuit codesign.

Negative Capacitance Field Effect Transistors

Negative Capacitance Field Effect Transistors PDF Author: Young Suh Song
Publisher:
ISBN: 9781032446844
Category : Capacitors
Languages : en
Pages : 0

Get Book Here

Book Description
This book aims to provide information in the ever-growing field of low-power electronic devices and their applications in portable device, wireless communication, sensor, and circuit domains. . Negative Capacitance Field Effect Transistor: Physics, Design, Modeling and Applications, discusses low-power semiconductor technology and addresses state-of-art techniques such as negative-capacitance field-effect transistors and tunnel field-effect transistors. The book is broken up into four parts. Part one discusses foundations of low-power electronics including the challenges and demands and concepts like subthreshold swing. Part two discusses the basic operations of negative-capacitance field-effect transistor (NC-FET) and Tunnel Field-effect Transistor (TFET). Part three covers industrial applications including cryogenics and biosensors with NC-FET. This book is designed to be one-stop guidebook for students and academic researchers, to understand recent trends in the IT industry and semiconductor industry. It will also be of interest to researchers in the field of nanodevices like NC-FET, FinFET, Tunnel FET, and device-circuit codesign.

A Journey of Embedded and Cyber-Physical Systems

A Journey of Embedded and Cyber-Physical Systems PDF Author: Jian-Jia Chen
Publisher: Springer Nature
ISBN: 3030474879
Category : Technology & Engineering
Languages : en
Pages : 181

Get Book Here

Book Description
This Open Access book celebrates Professor Peter Marwedel's outstanding achievements in compilers, embedded systems, and cyber-physical systems. The contributions in the book summarize the content of invited lectures given at the workshop “Embedded Systems” held at the Technical University Dortmund in early July 2019 in honor of Professor Marwedel's seventieth birthday. Provides a comprehensive view from leading researchers with respect to the past, present, and future of the design of embedded and cyber-physical systems; Discusses challenges and (potential) solutions from theoreticians and practitioners on modeling, design, analysis, and optimization for embedded and cyber-physical systems; Includes coverage of model verification, communication, software runtime systems, operating systems and real-time computing.

Study of High Mobility Ge and SiGe Channel Ferroelectric Negative Capacitance Field-effect Transistor and Complementary Field-effect Transistors

Study of High Mobility Ge and SiGe Channel Ferroelectric Negative Capacitance Field-effect Transistor and Complementary Field-effect Transistors PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Negative Capacitance Field Effect Transistors

Negative Capacitance Field Effect Transistors PDF Author: Young Suh Song
Publisher: CRC Press
ISBN: 1000933334
Category : Technology & Engineering
Languages : en
Pages : 167

Get Book Here

Book Description
This book aims to provide information in the ever-growing field of low-power electronic devices and their applications in portable devices, wireless communication, sensor, and circuit domains. Negative Capacitance Field Effect Transistors: Physics, Design, Modeling and Applications discusses low-power semiconductor technology and addresses state-of-the-art techniques such as negative capacitance field effect transistors and tunnel field effect transistors. The book is split into three parts. The first part discusses the foundations of low-power electronics, including the challenges and demands and concepts such as subthreshold swing. The second part discusses the basic operations of negative capacitance field effect transistors (NCFETs) and tunnel field effect transistors (TFETs). The third part covers industrial applications including cryogenics and biosensors with NC-FET. This book is designed to be a one-stop guide for students and academic researchers, to understand recent trends in the IT industry and semiconductor industry. It will also be of interest to researchers in the field of nanodevices such as NC-FET, FinFET, tunnel FET, and device–circuit codesign.

Ferroelectric Field Effect Transistors

Ferroelectric Field Effect Transistors PDF Author: Victoria Chen
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
In recent years, there has been an increasing number of issues associated with the continued Metal Oxide Semiconductor Field Effect Transistor (MOSFET) scaling. As feature lengths shrink down to atomic sizes, problems with power consumption, heat dissipation, and quantum effects become more prevalent. The unique properties of ferroelectric materials and their ability to display a negative differential capacitance make them a promising candidate for the use in future transistor technology, and a potential successor to traditional silicon CMOS devices. By placing a ferroelectric material layer in place of the dielectric layer of a MOSFET, it is possible to achieve a subthreshold slope lower than the typical 60 mV/dec limit. This device is called a ferroelectric field effect transistor (FerroFET). In this work, we develop a computational model based on the Landau-Devonshire theory to extract Landau coefficients from polarization-voltage data of a ferroelectric capacitor and simulate the current-voltage behavior of a FerroFET. We computationally demonstrate the gains of FerroFETs over conventional CMOS devices and explore properties of various ferroelectric materials. These FerroFETs have great potential for use in low power applications and could greatly revolutionize the current semiconductor industry.

Digital Logic Design Based on Negative Capacitance Field Effect Transistors

Digital Logic Design Based on Negative Capacitance Field Effect Transistors PDF Author: Mark Steiner
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This thesis explores the circuit implications of ferroelectric transistors with a focus on the effects of ferroelectric material thickness. Ferroelectric transistors have a thin layer of ferroelectric material deposited on the gate of the device. This material causes the behavior of the device to change due to its negative capacitance. While there are many variables which contribute to this effect, with all other variables fixed, the material thickness can be used to explore some of the actions of the ferroelectric transistors.This thesis shows transistor characteristics of the ferroelectric transistors mapped with respect to the ferroelectric material thickness. A ring oscillator is also used to explore the energy and delay of the ferroelectric transistors. Also, 6T SRAM cells are explored with respect to ferroelectric transistors to understand the implications of their use within SRAM cells. Ferroelectric transistors are found to be useful in low power systems to mitigate some of the issues that traditional MOSFETs encounter when in the same setting.

Compact Modeling

Compact Modeling PDF Author: Gennady Gildenblat
Publisher: Springer Science & Business Media
ISBN: 9048186145
Category : Technology & Engineering
Languages : en
Pages : 531

Get Book Here

Book Description
Most of the recent texts on compact modeling are limited to a particular class of semiconductor devices and do not provide comprehensive coverage of the field. Having a single comprehensive reference for the compact models of most commonly used semiconductor devices (both active and passive) represents a significant advantage for the reader. Indeed, several kinds of semiconductor devices are routinely encountered in a single IC design or in a single modeling support group. Compact Modeling includes mostly the material that after several years of IC design applications has been found both theoretically sound and practically significant. Assigning the individual chapters to the groups responsible for the definitive work on the subject assures the highest possible degree of expertise on each of the covered models.

Semiconductor Devices and Technologies for Future Ultra Low Power Electronics

Semiconductor Devices and Technologies for Future Ultra Low Power Electronics PDF Author: D. Nirmal
Publisher: CRC Press
ISBN: 1000475360
Category : Technology & Engineering
Languages : en
Pages : 303

Get Book Here

Book Description
This book covers the fundamentals and significance of 2-D materials and related semiconductor transistor technologies for the next-generation ultra low power applications. It provides comprehensive coverage on advanced low power transistors such as NCFETs, FinFETs, TFETs, and flexible transistors for future ultra low power applications owing to their better subthreshold swing and scalability. In addition, the text examines the use of field-effect transistors for biosensing applications and covers design considerations and compact modeling of advanced low power transistors such as NCFETs, FinFETs, and TFETs. TCAD simulation examples are also provided. FEATURES Discusses the latest updates in the field of ultra low power semiconductor transistors Provides both experimental and analytical solutions for TFETs and NCFETs Presents synthesis and fabrication processes for FinFETs Reviews details on 2-D materials and 2-D transistors Explores the application of FETs for biosensing in the healthcare field This book is aimed at researchers, professionals, and graduate students in electrical engineering, electronics and communication engineering, electron devices, nanoelectronics and nanotechnology, microelectronics, and solid-state circuits.

Advanced Nanoelectronics

Advanced Nanoelectronics PDF Author: Muhammad Mustafa Hussain
Publisher: John Wiley & Sons
ISBN: 352734358X
Category : Technology & Engineering
Languages : en
Pages : 284

Get Book Here

Book Description
Brings novel insights to a vibrant research area with high application potential?covering materials, physics, architecture, and integration aspects of future generation CMOS electronics technology Over the last four decades we have seen tremendous growth in semiconductor electronics. This growth has been fueled by the matured complementary metal oxide semiconductor (CMOS) technology. This comprehensive book captures the novel device options in CMOS technology that can be realized using non-silicon semiconductors. It discusses germanium, III-V materials, carbon nanotubes and graphene as semiconducting materials for three-dimensional field-effect transistors. It also covers non-conventional materials such as nanowires and nanotubes. Additionally, nanoelectromechanical switches-based mechanical relays and wide bandgap semiconductor-based terahertz electronics are reviewed as essential add-on electronics for enhanced communication and computational capabilities. Advanced Nanoelectronics: Post-Silicon Materials and Devices begins with a discussion of the future of CMOS. It continues with comprehensive chapter coverage of: nanowire field effect transistors; two-dimensional materials for electronic applications; the challenges and breakthroughs of the integration of germanium into modern CMOS; carbon nanotube logic technology; tunnel field effect transistors; energy efficient computing with negative capacitance; spin-based devices for logic, memory and non-Boolean architectures; and terahertz properties and applications of GaN. -Puts forward novel approaches for future, state-of-the-art, nanoelectronic devices -Discusses emerging materials and architectures such as alternate channel material like germanium, gallium nitride, 1D nanowires/tubes, 2D graphene, and other dichalcogenide materials and ferroelectrics -Examines new physics such as spintronics, negative capacitance, quantum computing, and 3D-IC technology -Brings together the latest developments in the field for easy reference -Enables academic and R&D researchers in semiconductors to "think outside the box" and explore beyond silica An important resource for future generation CMOS electronics technology, Advanced Nanoelectronics: Post-Silicon Materials and Devices will appeal to materials scientists, semiconductor physicists, semiconductor industry, and electrical engineers.