Nature-Inspired Metaheuristic Algorithms for Engineering Optimization Applications

Nature-Inspired Metaheuristic Algorithms for Engineering Optimization Applications PDF Author: Serdar Carbas
Publisher: Springer
ISBN: 9789813367753
Category : Technology & Engineering
Languages : en
Pages : 404

Get Book Here

Book Description
This book engages in an ongoing topic, such as the implementation of nature-inspired metaheuristic algorithms, with a main concentration on optimization problems in different fields of engineering optimization applications. The chapters of the book provide concise overviews of various nature-inspired metaheuristic algorithms, defining their profits in obtaining the optimal solutions of tiresome engineering design problems that cannot be efficiently resolved via conventional mathematical-based techniques. Thus, the chapters report on advanced studies on the applications of not only the traditional, but also the contemporary certain nature-inspired metaheuristic algorithms to specific engineering optimization problems with single and multi-objectives. Harmony search, artificial bee colony, teaching learning-based optimization, electrostatic discharge, grasshopper, backtracking search, and interactive search are just some of the methods exhibited and consulted step by step in application contexts. The book is a perfect guide for graduate students, researchers, academicians, and professionals willing to use metaheuristic algorithms in engineering optimization applications.

Nature-Inspired Metaheuristic Algorithms for Engineering Optimization Applications

Nature-Inspired Metaheuristic Algorithms for Engineering Optimization Applications PDF Author: Serdar Carbas
Publisher: Springer
ISBN: 9789813367753
Category : Technology & Engineering
Languages : en
Pages : 404

Get Book Here

Book Description
This book engages in an ongoing topic, such as the implementation of nature-inspired metaheuristic algorithms, with a main concentration on optimization problems in different fields of engineering optimization applications. The chapters of the book provide concise overviews of various nature-inspired metaheuristic algorithms, defining their profits in obtaining the optimal solutions of tiresome engineering design problems that cannot be efficiently resolved via conventional mathematical-based techniques. Thus, the chapters report on advanced studies on the applications of not only the traditional, but also the contemporary certain nature-inspired metaheuristic algorithms to specific engineering optimization problems with single and multi-objectives. Harmony search, artificial bee colony, teaching learning-based optimization, electrostatic discharge, grasshopper, backtracking search, and interactive search are just some of the methods exhibited and consulted step by step in application contexts. The book is a perfect guide for graduate students, researchers, academicians, and professionals willing to use metaheuristic algorithms in engineering optimization applications.

Nature-Inspired Methods for Metaheuristics Optimization

Nature-Inspired Methods for Metaheuristics Optimization PDF Author: Fouad Bennis
Publisher: Springer Nature
ISBN: 3030264580
Category : Business & Economics
Languages : en
Pages : 503

Get Book Here

Book Description
This book gathers together a set of chapters covering recent development in optimization methods that are inspired by nature. The first group of chapters describes in detail different meta-heuristic algorithms, and shows their applicability using some test or real-world problems. The second part of the book is especially focused on advanced applications and case studies. They span different engineering fields, including mechanical, electrical and civil engineering, and earth/environmental science, and covers topics such as robotics, water management, process optimization, among others. The book covers both basic concepts and advanced issues, offering a timely introduction to nature-inspired optimization method for newcomers and students, and a source of inspiration as well as important practical insights to engineers and researchers.

Metaheuristic Optimization: Nature-Inspired Algorithms Swarm and Computational Intelligence, Theory and Applications

Metaheuristic Optimization: Nature-Inspired Algorithms Swarm and Computational Intelligence, Theory and Applications PDF Author: Modestus O. Okwu
Publisher: Springer Nature
ISBN: 3030611116
Category : Technology & Engineering
Languages : en
Pages : 196

Get Book Here

Book Description
This book exemplifies how algorithms are developed by mimicking nature. Classical techniques for solving day-to-day problems is time-consuming and cannot address complex problems. Metaheuristic algorithms are nature-inspired optimization techniques for solving real-life complex problems. This book emphasizes the social behaviour of insects, animals and other natural entities, in terms of converging power and benefits. Major nature-inspired algorithms discussed in this book include the bee colony algorithm, ant colony algorithm, grey wolf optimization algorithm, whale optimization algorithm, firefly algorithm, bat algorithm, ant lion optimization algorithm, grasshopper optimization algorithm, butterfly optimization algorithm and others. The algorithms have been arranged in chapters to help readers gain better insight into nature-inspired systems and swarm intelligence. All the MATLAB codes have been provided in the appendices of the book to enable readers practice how to solve examples included in all sections. This book is for experts in Engineering and Applied Sciences, Natural and Formal Sciences, Economics, Humanities and Social Sciences.

Nature-inspired Metaheuristic Algorithms

Nature-inspired Metaheuristic Algorithms PDF Author: Xin-She Yang
Publisher: Luniver Press
ISBN: 1905986289
Category : Computers
Languages : en
Pages : 148

Get Book Here

Book Description
Modern metaheuristic algorithms such as bee algorithms and harmony search start to demonstrate their power in dealing with tough optimization problems and even NP-hard problems. This book reviews and introduces the state-of-the-art nature-inspired metaheuristic algorithms in optimization, including genetic algorithms, bee algorithms, particle swarm optimization, simulated annealing, ant colony optimization, harmony search, and firefly algorithms. We also briefly introduce the photosynthetic algorithm, the enzyme algorithm, and Tabu search. Worked examples with implementation have been used to show how each algorithm works. This book is thus an ideal textbook for an undergraduate and/or graduate course. As some of the algorithms such as the harmony search and firefly algorithms are at the forefront of current research, this book can also serve as a reference book for researchers.

Nature-Inspired Optimization Algorithms

Nature-Inspired Optimization Algorithms PDF Author: Xin-She Yang
Publisher: Elsevier
ISBN: 0124167454
Category : Computers
Languages : en
Pages : 277

Get Book Here

Book Description
Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning and control, as well as multi-objective optimization. This book can serve as an introductory book for graduates, doctoral students and lecturers in computer science, engineering and natural sciences. It can also serve a source of inspiration for new applications. Researchers and engineers as well as experienced experts will also find it a handy reference. - Discusses and summarizes the latest developments in nature-inspired algorithms with comprehensive, timely literature - Provides a theoretical understanding as well as practical implementation hints - Provides a step-by-step introduction to each algorithm

Nature-Inspired Optimization Algorithms

Nature-Inspired Optimization Algorithms PDF Author: Aditya Khamparia
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311067615X
Category : Computers
Languages : en
Pages : 204

Get Book Here

Book Description
This book will focus on the involvement of data mining and intelligent computing methods for recent advances in Biomedical applications and algorithms of nature-inspired computing for Biomedical systems. The proposed meta heuristic or nature-inspired techniques should be an enhanced, hybrid, adaptive or improved version of basic algorithms in terms of performance and convergence metrics. In this exciting and emerging interdisciplinary area a wide range of theory and methodologies are being investigated and developed to tackle complex and challenging problems. Today, analysis and processing of data is one of big focuses among researchers community and information society. Due to evolution and knowledge discovery of natural computing, related meta heuristic or bio-inspired algorithms have gained increasing popularity in the recent decade because of their significant potential to tackle computationally intractable optimization dilemma in medical, engineering, military, space and industry fields. The main reason behind the success rate of nature inspired algorithms is their capability to solve problems. The nature inspired optimization techniques provide adaptive computational tools for the complex optimization problems and diversified engineering applications. Tentative Table of Contents/Topic Coverage: - Neural Computation - Evolutionary Computing Methods - Neuroscience driven AI Inspired Algorithms - Biological System based algorithms - Hybrid and Intelligent Computing Algorithms - Application of Natural Computing - Review and State of art analysis of Optimization algorithms - Molecular and Quantum computing applications - Swarm Intelligence - Population based algorithm and other optimizations

Advanced Optimization by Nature-Inspired Algorithms

Advanced Optimization by Nature-Inspired Algorithms PDF Author: Omid Bozorg-Haddad
Publisher: Springer
ISBN: 9811052212
Category : Technology & Engineering
Languages : en
Pages : 166

Get Book Here

Book Description
This book, compiles, presents, and explains the most important meta-heuristic and evolutionary optimization algorithms whose successful performance has been proven in different fields of engineering, and it includes application of these algorithms to important engineering optimization problems. In addition, this book guides readers to studies that have implemented these algorithms by providing a literature review on developments and applications of each algorithm. This book is intended for students, but can be used by researchers and professionals in the area of engineering optimization.

Nature-Inspired Metaheuristic Algorithms for Engineering Optimization Applications

Nature-Inspired Metaheuristic Algorithms for Engineering Optimization Applications PDF Author: Serdar Carbas
Publisher: Springer Nature
ISBN: 9813367733
Category : Technology & Engineering
Languages : en
Pages : 420

Get Book Here

Book Description
This book engages in an ongoing topic, such as the implementation of nature-inspired metaheuristic algorithms, with a main concentration on optimization problems in different fields of engineering optimization applications. The chapters of the book provide concise overviews of various nature-inspired metaheuristic algorithms, defining their profits in obtaining the optimal solutions of tiresome engineering design problems that cannot be efficiently resolved via conventional mathematical-based techniques. Thus, the chapters report on advanced studies on the applications of not only the traditional, but also the contemporary certain nature-inspired metaheuristic algorithms to specific engineering optimization problems with single and multi-objectives. Harmony search, artificial bee colony, teaching learning-based optimization, electrostatic discharge, grasshopper, backtracking search, and interactive search are just some of the methods exhibited and consulted step by step in application contexts. The book is a perfect guide for graduate students, researchers, academicians, and professionals willing to use metaheuristic algorithms in engineering optimization applications.

Meta-heuristic and Evolutionary Algorithms for Engineering Optimization

Meta-heuristic and Evolutionary Algorithms for Engineering Optimization PDF Author: Omid Bozorg-Haddad
Publisher: John Wiley & Sons
ISBN: 1119386993
Category : Mathematics
Languages : en
Pages : 306

Get Book Here

Book Description
A detailed review of a wide range of meta-heuristic and evolutionary algorithms in a systematic manner and how they relate to engineering optimization problems This book introduces the main metaheuristic algorithms and their applications in optimization. It describes 20 leading meta-heuristic and evolutionary algorithms and presents discussions and assessments of their performance in solving optimization problems from several fields of engineering. The book features clear and concise principles and presents detailed descriptions of leading methods such as the pattern search (PS) algorithm, the genetic algorithm (GA), the simulated annealing (SA) algorithm, the Tabu search (TS) algorithm, the ant colony optimization (ACO), and the particle swarm optimization (PSO) technique. Chapter 1 of Meta-heuristic and Evolutionary Algorithms for Engineering Optimization provides an overview of optimization and defines it by presenting examples of optimization problems in different engineering domains. Chapter 2 presents an introduction to meta-heuristic and evolutionary algorithms and links them to engineering problems. Chapters 3 to 22 are each devoted to a separate algorithm— and they each start with a brief literature review of the development of the algorithm, and its applications to engineering problems. The principles, steps, and execution of the algorithms are described in detail, and a pseudo code of the algorithm is presented, which serves as a guideline for coding the algorithm to solve specific applications. This book: Introduces state-of-the-art metaheuristic algorithms and their applications to engineering optimization; Fills a gap in the current literature by compiling and explaining the various meta-heuristic and evolutionary algorithms in a clear and systematic manner; Provides a step-by-step presentation of each algorithm and guidelines for practical implementation and coding of algorithms; Discusses and assesses the performance of metaheuristic algorithms in multiple problems from many fields of engineering; Relates optimization algorithms to engineering problems employing a unifying approach. Meta-heuristic and Evolutionary Algorithms for Engineering Optimization is a reference intended for students, engineers, researchers, and instructors in the fields of industrial engineering, operations research, optimization/mathematics, engineering optimization, and computer science. OMID BOZORG-HADDAD, PhD, is Professor in the Department of Irrigation and Reclamation Engineering at the University of Tehran, Iran. MOHAMMAD SOLGI, M.Sc., is Teacher Assistant for M.Sc. courses at the University of Tehran, Iran. HUGO A. LOÁICIGA, PhD, is Professor in the Department of Geography at the University of California, Santa Barbara, United States of America.

Artificial Intelligence, Evolutionary Computing and Metaheuristics

Artificial Intelligence, Evolutionary Computing and Metaheuristics PDF Author: Xin-She Yang
Publisher: Springer
ISBN: 3642296947
Category : Technology & Engineering
Languages : en
Pages : 797

Get Book Here

Book Description
Alan Turing pioneered many research areas such as artificial intelligence, computability, heuristics and pattern formation. Nowadays at the information age, it is hard to imagine how the world would be without computers and the Internet. Without Turing's work, especially the core concept of Turing Machine at the heart of every computer, mobile phone and microchip today, so many things on which we are so dependent would be impossible. 2012 is the Alan Turing year -- a centenary celebration of the life and work of Alan Turing. To celebrate Turing's legacy and follow the footsteps of this brilliant mind, we take this golden opportunity to review the latest developments in areas of artificial intelligence, evolutionary computation and metaheuristics, and all these areas can be traced back to Turing's pioneer work. Topics include Turing test, Turing machine, artificial intelligence, cryptography, software testing, image processing, neural networks, nature-inspired algorithms such as bat algorithm and cuckoo search, and multiobjective optimization and many applications. These reviews and chapters not only provide a timely snapshot of the state-of-art developments, but also provide inspiration for young researchers to carry out potentially ground-breaking research in the active, diverse research areas in artificial intelligence, cryptography, machine learning, evolutionary computation, and nature-inspired metaheuristics. This edited book can serve as a timely reference for graduates, researchers and engineers in artificial intelligence, computer sciences, computational intelligence, soft computing, optimization, and applied sciences.