Natural Language Processing Fundamentals

Natural Language Processing Fundamentals PDF Author: Sohom Ghosh
Publisher: Packt Publishing Ltd
ISBN: 178995598X
Category : Computers
Languages : en
Pages : 374

Get Book Here

Book Description
Use Python and NLTK (Natural Language Toolkit) to build out your own text classifiers and solve common NLP problems. Key FeaturesAssimilate key NLP concepts and terminologies Explore popular NLP tools and techniquesGain practical experience using NLP in application codeBook Description If NLP hasn't been your forte, Natural Language Processing Fundamentals will make sure you set off to a steady start. This comprehensive guide will show you how to effectively use Python libraries and NLP concepts to solve various problems. You'll be introduced to natural language processing and its applications through examples and exercises. This will be followed by an introduction to the initial stages of solving a problem, which includes problem definition, getting text data, and preparing it for modeling. With exposure to concepts like advanced natural language processing algorithms and visualization techniques, you'll learn how to create applications that can extract information from unstructured data and present it as impactful visuals. Although you will continue to learn NLP-based techniques, the focus will gradually shift to developing useful applications. In these sections, you'll understand how to apply NLP techniques to answer questions as can be used in chatbots. By the end of this book, you'll be able to accomplish a varied range of assignments ranging from identifying the most suitable type of NLP task for solving a problem to using a tool like spacy or gensim for performing sentiment analysis. The book will easily equip you with the knowledge you need to build applications that interpret human language. What you will learnObtain, verify, and clean data before transforming it into a correct format for usePerform data analysis and machine learning tasks using PythonUnderstand the basics of computational linguisticsBuild models for general natural language processing tasksEvaluate the performance of a model with the right metricsVisualize, quantify, and perform exploratory analysis from any text dataWho this book is for Natural Language Processing Fundamentals is designed for novice and mid-level data scientists and machine learning developers who want to gather and analyze text data to build an NLP-powered product. It'll help you to have prior experience of coding in Python using data types, writing functions, and importing libraries. Some experience with linguistics and probability is useful but not necessary.

Natural Language Processing Fundamentals

Natural Language Processing Fundamentals PDF Author: Sohom Ghosh
Publisher: Packt Publishing Ltd
ISBN: 178995598X
Category : Computers
Languages : en
Pages : 374

Get Book Here

Book Description
Use Python and NLTK (Natural Language Toolkit) to build out your own text classifiers and solve common NLP problems. Key FeaturesAssimilate key NLP concepts and terminologies Explore popular NLP tools and techniquesGain practical experience using NLP in application codeBook Description If NLP hasn't been your forte, Natural Language Processing Fundamentals will make sure you set off to a steady start. This comprehensive guide will show you how to effectively use Python libraries and NLP concepts to solve various problems. You'll be introduced to natural language processing and its applications through examples and exercises. This will be followed by an introduction to the initial stages of solving a problem, which includes problem definition, getting text data, and preparing it for modeling. With exposure to concepts like advanced natural language processing algorithms and visualization techniques, you'll learn how to create applications that can extract information from unstructured data and present it as impactful visuals. Although you will continue to learn NLP-based techniques, the focus will gradually shift to developing useful applications. In these sections, you'll understand how to apply NLP techniques to answer questions as can be used in chatbots. By the end of this book, you'll be able to accomplish a varied range of assignments ranging from identifying the most suitable type of NLP task for solving a problem to using a tool like spacy or gensim for performing sentiment analysis. The book will easily equip you with the knowledge you need to build applications that interpret human language. What you will learnObtain, verify, and clean data before transforming it into a correct format for usePerform data analysis and machine learning tasks using PythonUnderstand the basics of computational linguisticsBuild models for general natural language processing tasksEvaluate the performance of a model with the right metricsVisualize, quantify, and perform exploratory analysis from any text dataWho this book is for Natural Language Processing Fundamentals is designed for novice and mid-level data scientists and machine learning developers who want to gather and analyze text data to build an NLP-powered product. It'll help you to have prior experience of coding in Python using data types, writing functions, and importing libraries. Some experience with linguistics and probability is useful but not necessary.

Natural Language Processing Fundamentals for Developers

Natural Language Processing Fundamentals for Developers PDF Author: Oswald Campesato
Publisher: Mercury Learning and Information
ISBN: 1683926552
Category : Computers
Languages : en
Pages : 520

Get Book Here

Book Description
This book is for developers who are looking for an overview of basic concepts in Natural Language Processing. It casts a wide net of techniques to help developers who have a range of technical backgrounds. Numerous code samples and listings are included to support myriad topics. The first chapter shows you various details of managing data that are relevant for NLP. The next pair of chapters contain NLP concepts, followed by another pair of chapters with Python code samples to illustrate those NLP concepts. Chapter 6 explores applications, e.g., sentiment analysis, recommender systems, COVID-19 analysis, spam detection, and a short discussion regarding chatbots. The final chapter presents the Transformer architecture, BERT-based models, and the GPT family of models, all of which were developed during the past three years and considered SOTA (“state of the art”). The appendices contain introductory material (including Python code samples) on regular expressions and probability/statistical concepts. Companion files with source code and figures are included. FEATURES: Covers extensive topics related to natural language processing Includes separate appendices on regular expressions and probability/statistics Features companion files with source code and figures from the book. The companion files are available online by emailing the publisher with proof of purchase at [email protected].

Practical Natural Language Processing

Practical Natural Language Processing PDF Author: Sowmya Vajjala
Publisher: O'Reilly Media
ISBN: 149205402X
Category : Computers
Languages : en
Pages : 455

Get Book Here

Book Description
Many books and courses tackle natural language processing (NLP) problems with toy use cases and well-defined datasets. But if you want to build, iterate, and scale NLP systems in a business setting and tailor them for particular industry verticals, this is your guide. Software engineers and data scientists will learn how to navigate the maze of options available at each step of the journey. Through the course of the book, authors Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, and Harshit Surana will guide you through the process of building real-world NLP solutions embedded in larger product setups. You’ll learn how to adapt your solutions for different industry verticals such as healthcare, social media, and retail. With this book, you’ll: Understand the wide spectrum of problem statements, tasks, and solution approaches within NLP Implement and evaluate different NLP applications using machine learning and deep learning methods Fine-tune your NLP solution based on your business problem and industry vertical Evaluate various algorithms and approaches for NLP product tasks, datasets, and stages Produce software solutions following best practices around release, deployment, and DevOps for NLP systems Understand best practices, opportunities, and the roadmap for NLP from a business and product leader’s perspective

Natural Language Processing with Python

Natural Language Processing with Python PDF Author: Steven Bird
Publisher: "O'Reilly Media, Inc."
ISBN: 0596555717
Category : Computers
Languages : en
Pages : 506

Get Book Here

Book Description
This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies, from predictive text and email filtering to automatic summarization and translation. With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication. Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligence This book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.

Natural Language Processing Fundamentals for Developers

Natural Language Processing Fundamentals for Developers PDF Author: Oswald Campesato
Publisher: Mercury Learning and Information
ISBN: 9781683926573
Category : Computers
Languages : en
Pages : 364

Get Book Here

Book Description
This book is for developers who are looking for an overview of basic concepts in Natural Language Processing. It casts a wide net of techniques to help developers who have a range of technical backgrounds. Numerous code samples and listings are included to support myriad topics. The first chapter shows you various details of managing data that are relevant for NLP. The next pair of chapters contain NLP concepts, followed by another pair of chapters with Python code samples to illustrate those NLP concepts. Chapter 6 explores applications, e.g., sentiment analysis, recommender systems, COVID-19 analysis, spam detection, and a short discussion regarding chatbots. The final chapter presents the Transformer architecture, BERT-based models, and the GPT family of models, all of which were developed during the past three years and considered SOTA ("state of the art"). The appendices contain introductory material (including Python code samples) on regular expressions and probability/statistical concepts. Companion files with source code and figures are included. FEATURES: Covers extensive topics related to natural language processing Includes separate appendices on regular expressions and probability/statistics Features companion files with source code and figures from the book.

Introduction to Natural Language Processing

Introduction to Natural Language Processing PDF Author: Jacob Eisenstein
Publisher: MIT Press
ISBN: 0262042843
Category : Computers
Languages : en
Pages : 535

Get Book Here

Book Description
A survey of computational methods for understanding, generating, and manipulating human language, which offers a synthesis of classical representations and algorithms with contemporary machine learning techniques. This textbook provides a technical perspective on natural language processing—methods for building computer software that understands, generates, and manipulates human language. It emphasizes contemporary data-driven approaches, focusing on techniques from supervised and unsupervised machine learning. The first section establishes a foundation in machine learning by building a set of tools that will be used throughout the book and applying them to word-based textual analysis. The second section introduces structured representations of language, including sequences, trees, and graphs. The third section explores different approaches to the representation and analysis of linguistic meaning, ranging from formal logic to neural word embeddings. The final section offers chapter-length treatments of three transformative applications of natural language processing: information extraction, machine translation, and text generation. End-of-chapter exercises include both paper-and-pencil analysis and software implementation. The text synthesizes and distills a broad and diverse research literature, linking contemporary machine learning techniques with the field's linguistic and computational foundations. It is suitable for use in advanced undergraduate and graduate-level courses and as a reference for software engineers and data scientists. Readers should have a background in computer programming and college-level mathematics. After mastering the material presented, students will have the technical skill to build and analyze novel natural language processing systems and to understand the latest research in the field.

Linguistic Fundamentals for Natural Language Processing

Linguistic Fundamentals for Natural Language Processing PDF Author: Emily M. Bender
Publisher: Morgan & Claypool Publishers
ISBN: 1627050124
Category : Computers
Languages : en
Pages : 186

Get Book Here

Book Description
Many NLP tasks have at their core a subtask of extracting the dependencies—who did what to whom—from natural language sentences. This task can be understood as the inverse of the problem solved in different ways by diverse human languages, namely, how to indicate the relationship between different parts of a sentence. Understanding how languages solve the problem can be extremely useful in both feature design and error analysis in the application of machine learning to NLP. Likewise, understanding cross-linguistic variation can be important for the design of MT systems and other multilingual applications. The purpose of this book is to present in a succinct and accessible fashion information about the morphological and syntactic structure of human languages that can be useful in creating more linguistically sophisticated, more language-independent, and thus more successful NLP systems. Table of Contents: Acknowledgments / Introduction/motivation / Morphology: Introduction / Morphophonology / Morphosyntax / Syntax: Introduction / Parts of speech / Heads, arguments, and adjuncts / Argument types and grammatical functions / Mismatches between syntactic position and semantic roles / Resources / Bibliography / Author's Biography / General Index / Index of Languages

Deep Learning for Natural Language Processing

Deep Learning for Natural Language Processing PDF Author: Palash Goyal
Publisher: Apress
ISBN: 1484236858
Category : Computers
Languages : en
Pages : 290

Get Book Here

Book Description
Discover the concepts of deep learning used for natural language processing (NLP), with full-fledged examples of neural network models such as recurrent neural networks, long short-term memory networks, and sequence-2-sequence models. You’ll start by covering the mathematical prerequisites and the fundamentals of deep learning and NLP with practical examples. The first three chapters of the book cover the basics of NLP, starting with word-vector representation before moving onto advanced algorithms. The final chapters focus entirely on implementation, and deal with sophisticated architectures such as RNN, LSTM, and Seq2seq, using Python tools: TensorFlow, and Keras. Deep Learning for Natural Language Processing follows a progressive approach and combines all the knowledge you have gained to build a question-answer chatbot system. This book is a good starting point for people who want to get started in deep learning for NLP. All the code presented in the book will be available in the form of IPython notebooks and scripts, which allow you to try out the examples and extend them in interesting ways. What You Will Learn Gain the fundamentals of deep learning and its mathematical prerequisites Discover deep learning frameworks in Python Develop a chatbot Implement a research paper on sentiment classification Who This Book Is For Software developers who are curious to try out deep learning with NLP.

Natural Language Processing with Python Quick Start Guide

Natural Language Processing with Python Quick Start Guide PDF Author: Nirant Kasliwal
Publisher: Packt Publishing Ltd
ISBN: 1788994108
Category : Computers
Languages : en
Pages : 177

Get Book Here

Book Description
Build and deploy intelligent applications for natural language processing with Python by using industry standard tools and recently popular methods in deep learning Key FeaturesA no-math, code-driven programmer’s guide to text processing and NLPGet state of the art results with modern tooling across linguistics, text vectors and machine learningFundamentals of NLP methods from spaCy, gensim, scikit-learn and PyTorchBook Description NLP in Python is among the most sought after skills among data scientists. With code and relevant case studies, this book will show how you can use industry-grade tools to implement NLP programs capable of learning from relevant data. We will explore many modern methods ranging from spaCy to word vectors that have reinvented NLP. The book takes you from the basics of NLP to building text processing applications. We start with an introduction to the basic vocabulary along with a workflow for building NLP applications. We use industry-grade NLP tools for cleaning and pre-processing text, automatic question and answer generation using linguistics, text embedding, text classifier, and building a chatbot. With each project, you will learn a new concept of NLP. You will learn about entity recognition, part of speech tagging and dependency parsing for Q and A. We use text embedding for both clustering documents and making chatbots, and then build classifiers using scikit-learn. We conclude by deploying these models as REST APIs with Flask. By the end, you will be confident building NLP applications, and know exactly what to look for when approaching new challenges. What you will learnUnderstand classical linguistics in using English grammar for automatically generating questions and answers from a free text corpusWork with text embedding models for dense number representations of words, subwords and characters in the English language for exploring document clusteringDeep Learning in NLP using PyTorch with a code-driven introduction to PyTorchUsing an NLP project management Framework for estimating timelines and organizing your project into stagesHack and build a simple chatbot application in 30 minutesDeploy an NLP or machine learning application using Flask as RESTFUL APIsWho this book is for Programmers who wish to build systems that can interpret language. Exposure to Python programming is required. Familiarity with NLP or machine learning vocabulary will be helpful, but not mandatory.

Natural Language Processing with Spark NLP

Natural Language Processing with Spark NLP PDF Author: Alex Thomas
Publisher: O'Reilly Media
ISBN: 1492047732
Category : Computers
Languages : en
Pages : 367

Get Book Here

Book Description
If you want to build an enterprise-quality application that uses natural language text but aren’t sure where to begin or what tools to use, this practical guide will help get you started. Alex Thomas, principal data scientist at Wisecube, shows software engineers and data scientists how to build scalable natural language processing (NLP) applications using deep learning and the Apache Spark NLP library. Through concrete examples, practical and theoretical explanations, and hands-on exercises for using NLP on the Spark processing framework, this book teaches you everything from basic linguistics and writing systems to sentiment analysis and search engines. You’ll also explore special concerns for developing text-based applications, such as performance. In four sections, you’ll learn NLP basics and building blocks before diving into application and system building: Basics: Understand the fundamentals of natural language processing, NLP on Apache Stark, and deep learning Building blocks: Learn techniques for building NLP applications—including tokenization, sentence segmentation, and named-entity recognition—and discover how and why they work Applications: Explore the design, development, and experimentation process for building your own NLP applications Building NLP systems: Consider options for productionizing and deploying NLP models, including which human languages to support